We present resonant tunneling diode-photodetectors (RTD-PDs) with GaAs0.15Sb0.85/AlAs0.1Sb0.9 double barrier structures combined with an additional quaternary Ga0.64In0.36As0.
Weakly electric fish use a process called 'active electrolocation' to orientate in their environment and to localize objects based on their electrical properties. To do so, the fish discharge an electric organ which emits brief electrical current pulses (electric organ discharge, EOD) and in return sense the generated electric field which builds up surrounding the animal. Caused by the electrical properties of nearby objects, fish measure characteristic signal modulations with an array of electroreceptors in their skin. The fish are able to gain important information about the geometrical properties of an object as well as its complex impedance and its distance. Thus, active electrolocation is an interesting feature to be used in biomimetic approaches. We used this sensory principle to identify different insertions in the walls of Plexiglas tubes. The insertions tested were composed of aluminum, brass and graphite in sizes between 3 and 20 mm. A carrier signal was emitted and perceived with the poles of a commercial catheter for medical diagnostics. Measurements were performed with the poles separated by 6.3 to 55.3 mm. Depending on the length of the insertion in relation to the sender-receiver distance, we observed up to three peaks in the measured electric images. The first peak was affected by the material of the insertion, while the distance between the second and third peak strongly correlated with the length of the insertion.In a second experiment we tested whether various materials could be detected by using signals of different frequency compositions. Based on their electric images we were able to discriminate between objects having different resistive properties, but not between objects of complex impedances.
The aim of this study was to assess the difference of fluorescence signals of cement and calculus using a 405 nm excitation wavelength. A total number of 20 freshly extracted teeth was used. The light source used for this study was a blue LED with a wavelength of 405nm. For each tooth the spectra of calculus and cementum were measured separately. Fluorescence light was collimated into an optical fibre and spectrally analyzed using an echelle spectrometer (aryelle 200, Lasertechnik Berlin, Germany) with an additionally bandpass (fgb 67, Edmund Industrial Optics, Karlsruhe, Germany). From these 40 measurements the median values were calculated over the whole spectrum, leading to two different median spectra, one for calculus and one for cementum. For further statistical analysis we defined 8 areas of interest (AOI) in wavelength regions, showing remarkable differences in signal strength. In 7 AOIs the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p < 0.05). A spectral difference could be shown between calculus and cement between 600nm and 700nm. Thus, we can conclude that fluorescence of calculus shows a significant difference to the fluorescence of cement. A differentiation over the intensity is possible as well as over the spectrum. Using a wavelength of 405nm, it is possible to distinguish between calculus and cement. These results could be used for further devices to develop a method for feedback controlled calculus removal. Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.