Background: Serious side effects caused by paclitaxel formulation, containing toxic solubilizer Cremophor® EL, and its nonspecific accumulation greatly limit clinical paclitaxel application. Aim: To design paclitaxel-loaded copolymer of lactic and glycolic acids nanoparticles decorated with alpha-fetoprotein third domain (rAFP3d-NP) to increase paclitaxel safety profile. Methods: rAFP3d-NP was obtained via carbodiimide technique. Results: The particles were characterized with high paclitaxel loading content of 5% and size of 280 nm. rAFP3d-NP revealed biphasic profile with 67% release of paclitaxel during 220 h. Increased area under the curveinf and mean residence time values after rAFP3d-NP administration confirmed prolonged blood circulation compared with paclitaxel. rAFP3d-NP demonstrated significant tumor growth inhibition at 4T1 and SKOV-3 models. Conclusion: rAFP3d-NP is a promising delivery system for paclitaxel and can be applied similarly for delivery of other hydrophobic drugs.
A series of 1-(2-hydroxyethyl)- and 1-(3-hydroxyethyl)-3-substituted ureas and thioureas were synthesized. 1-(3-Hydroxyethyl)-3-acylthioureas were shown to be specific substrates for alcohol dehydrogenase in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.