In this work, a previously proposed methodology for the optimization of analytical scale protein separations using ion-exchange chromatography is subjected to two challenging case studies. The optimization methodology uses a Doehlert shell design for design of experiments and a novel criteria function to rank chromatograms in order of desirability. This chromatographic optimization function (COF) accounts for the separation between neighboring peaks, the total number of peaks eluted, and total analysis time. The COF is penalized when undesirable peak geometries (i.e., skewed and/or shouldered peaks) are present as determined by a vector quantizing neural network. Results of the COF analysis are fit to a quadratic response model, which is optimized with respect to the optimization variables using an advanced Nelder and Mead simplex algorithm. The optimization methodology is tested on two case study sample mixtures, the first of which is composed of equal parts of lysozyme, conalbumin, bovine serum albumin, and transferrin, and the second of which contains equal parts of conalbumin, bovine serum albumin, tranferrin, beta-lactoglobulin, insulin, and alpha -chymotrypsinogen A. Mobile-phase pH and gradient length are optimized to achieve baseline resolution of all solutes for both case studies in acceptably short analysis times, thus demonstrating the usefulness of the empirical optimization methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.