Transparent high optical quality and large Ti-sapphire (Ti 3þ -doped Al 2 O 3 ) single crystals have been grown by the Kyropoulos technique (KT) for optical amplification. The present work shows that by the utilization of KT growth technology and the optimization of the growth conditions it is possible to grow Ti-doped Al 2 O 3 , 100 mm in diameter and 5 kg in weight. We have demonstrated that large Ti(0.25 atom %)-doped Al 2 O 3 crystals show high chemical homogeneities and good optical properties and amplify the energy without any special annealing. Ti-doped sapphire crystals are for high power laser applications and particularly for the shortest pulses ever produced from a laser oscillator.
Crystal growth of oxides is generally difficult since large curvatures of the growth interface in these systems generate high thermal stress, dislocations and crystal cracking. Three-dimensional numerical modeling is applied to investigate thermal stress distribution in sapphire and langatate La3Ta0.5Ga5.5O14 (LGT) semi-transparent crystals grown by Czochralski (Cz) and Edge-defined Film-fed Growth (EFG) techniques. The analysis of thermal stress distribution in a sapphire ingot grown in a Czochralski furnace shows high von Mises stresses distributed almost symmetrically on large areas in the crystal. Thermal stress computations for piezoelectric langatate crystals grown in a Czochralski configuration show non-symmetrical von Mises distribution with higher stress on one side of the ingot. These numerical results are in agreement with experimental results showing non-symmetrical cracking at the outer surface of the crystal. 3D modeling of multi-die EFG growth of white sapphire ribbons shows that the von Mises stress is almost constant when the number of ribbons is increased from two to ten. Two models are applied to simulate the internal radiative heat transfer in the sapphire crystals: P1 approximation and the Rosseland radiation model. Numerical results show that applying Rosseland formula introduces significant errors in temperature field calculations especially in the case of the EFG configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.