The electronic properties of the carbon substituted MgB2 single crystals are reported. The carbon substitution drops Tc below 2 K. In-plane resistivity shows a remarkable increase in residual resistivity by C-substitution, while the change of in-plane/out-of-plane Hall coefficients is rather small. Raman scattering spectra indicate that the E2g-phonon frequency radically hardens with increasing the carbon-content, suggesting the weakening of electron-phonon coupling. Another striking C-effect is the increases of the second critical fields in both in-plane and out-of-plane directions, accompanied by a reduction in the anisotropy ratio. The possible changes in the electronic state and the origin of Tc-suppression by C-substitution are discussed.
Polarization-resolved Raman scattering measurements were performed on MgB(2) single crystals to determine the magnitude, symmetry, and temperature dependence of the superconducting gap. A single sharp peak due to Cooper pair breaking appears in the electronic continuum below T(c), reaching a maximum Raman shift of 105 +/- 1 cm(-1) [2 Delta(0)/k(B)T(c) = 3.96 +/- 0.09] and showing up to 5 cm(-1) anisotropy between polarized and depolarized spectra. The temperature dependence of 2 Delta follows that predicted from BCS theory, while the anisotropy decreases with decreasing temperature. It is concluded that the Raman results are consistent with a slightly anisotropic s-wave gap in a conventional BCS superconductor.
We report observations of quantum oscillations in single crystals of the high temperature superconductor MgB2. Three de Haas-van Alphen frequencies are clearly resolved. Comparison with band structure calculations strongly suggests that two of these come from a single warped Fermi surface tube along the c direction, and that the third arises from cylindrical sections of an in-plane honeycomb network. The measured values of the effective mass range from (0.44-0.68)m(e). By comparing these to calculated band masses, we find that the electron-phonon coupling strength lambda is a factor of approximately 3 larger for the c-axis tube orbits than for the in-plane network orbit, in accord with recent microscopic calculations.
We study phonons in MgB 2 using inelastic x-ray scattering (1.6 and 6 meV resolution). Our measurements show excellent agreement with theory for the dispersion and line-width: we clearly observe the softening and broadening of the crucial E 2g mode through the Kohn anomaly along ΓM. Low temperature measurements (just above and below T c ) show negligible changes for the momentum-transfers investigated, and no change in the E 2g mode at A between room temperature and 16K. We report the presence of a longitudinal mode along ΓA near in energy to the E 2g mode that is not predicted by theory.
The first angle-resolved photoemission spectroscopy results from MgB2 single crystals are reported. Along the GammaK and GammaM directions, we observed three distinct dispersive features approaching the Fermi energy. These can be assigned to the theoretically predicted sigma (B 2p(x,y)) and pi (B 2p(z)) bands. In addition, a small parabolic-like band is detected around the Gamma point, which can be attributed to a surface-derived state. The overall agreement between our results and the band calculations suggests that the electronic structure of MgB2 is of a conventional nature, thus implying that electron correlations are weak and may be of little importance to superconductivity in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.