Friction welding is a solid state joining process and it is best suited for joining dissimilar metals. It overcomes the problems associated with the conventional fusion welding processes. The joining of dissimilar metals using fusion welding processes produce brittle intermetallic precipitates at the interface which reduce the mechanical strength. Various aerospace, nuclear, chemical and cryogenic applications demand joints between titanium and stainless steel. Direct joining of these metals results in brittle intermetallics like FeTi and FexTiy, at the weld interface, which is to be avoided in order to achieve improved properties of the joints. Present study involves joining of two industrially important dissimilar metals such as commercially pure titanium and 304 stainless steel by friction welding with electroplated nickel coating as interlayer that can prevent the brittle intermetallic formation. Microstructural details of the interfaces of the friction welded joints were studied by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) technique and X-ray diffraction (XRD). Microhardness survey was carried out across the joints and tensile test was conducted to assess the mechanical properties of the joints. Fractography studies were carried out on the fracture surfaces of the joints to know the region of failure as well as the mode of failure. XRD patterns indicate the presence of intermetallics in the friction welded joints. These two metals were successfully joined by having electroplated nickel as interlayer. The weld interface on titanium side contained Ti-Ni intermetallics layers, in which the hardness of the weld metal showing the higher value than the base metals. Fractography study conducted on the fracture surfaces created due to pull test reveals that the failure is by brittle fracture and occurred at the intermetallics layer. The maximum strength of the joints achieved for 30 μm and 50 μm thick electroplated nickel interlayers are 242 MPa and 308 MPa, respectively.
Zirconium nitride (ZrN) thin films were prepared on stainless steel (SS) substrates by medium frequency (MF) reactive sputtering with gas ion source (GIS) by varying the deposition time and obtained thickness (tZrN) in the range of 1.25 to 3.24 μm. The effect of thickness on the structural and microstructural properties was studied using XRD and AFM. XRD characterization revealed that the texture of the ZrN thin films changes as a function of thickness. Both, the (111) and (200) peak, appear initially and (111) becomes more intense with increasing tZrN. AFM imaging revealed that the ZrN thin film coated with tZrN ≈ 3.24 μm shows larger grains that are uniformly distributed over the surface. An average hardness value of 19.79 GPa was observed for ZrN thin films having tZrN ≈ 3.24 μm. The ZrN thin films having tZrN ≈ 3.24 μm exhibits better adhesion strength up to 20 N. The electrochemical polarization studies indicated that the ZrN thin film having larger thickness shows improved corrosion resistance compared to SS in 3.5 % NaCl solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.