Although primary cilia are well established as important sensory and signaling structures, their function in most tissues remains unknown. Obesity is a feature associated with some syndromes of cilia dysfunction, such as Bardet-Biedl syndrome (BBS) and Alström syndrome, as well as in several cilia mutant mouse models. Recent data indicate that obesity in BBS mutant mice is due to defects in leptin receptor trafficking and leptin resistance. Furthermore, induction of cilia loss in leptin-responsive proopiomelanocortin neurons results in obesity, implicating cilia on hypothalamic neurons in regulating feeding behavior. Here, we directly test the importance of the cilium as a mediator of the leptin response. In contrast to the current dogma, a longitudinal study of conditional Ift88 cilia mutant mice under different states of adiposity indicates that leptin resistance is present only when mutants are obese. Our studies show that caloric restriction leads to an altered anticipatory feeding behavior that temporarily abrogates the anorectic actions of leptin despite normalized circulating leptin levels. Interestingly, preobese Bbs4 mutant mice responded to the anorectic effects of leptin and did not display other phenotypes associated with defective leptin signaling. Furthermore, thermoregulation and activity measurements in cilia mutant mice are inconsistent with phenotypes previously observed in leptin deficient ob/ob mice. Collectively, these data indicate that cilia are not directly involved in leptin responses and that a defect in the leptin signaling axis is not the initiating event leading to hyperphagia and obesity associated with cilia dysfunction.
It has been known for decades that neurons throughout the brain possess solitary, immotile, microtubule based appendages called primary cilia. Only recently have studies tried to address the functions of these cilia and our current understanding remains poor. To determine if neuronal cilia have a role in behavior we specifically disrupted ciliogenesis in the cortex and hippocampus of mice through conditional deletion of the Intraflagellar Transport 88 (Ift88) gene. The effects on learning and memory were analyzed using both Morris Water Maze and fear conditioning paradigms. In comparison to wild type controls, cilia mutants displayed deficits in aversive learning and memory and novel object recognition. Furthermore, hippocampal neurons from mutants displayed an altered paired-pulse response, suggesting that loss of IFT88 can alter synaptic properties. A variety of other behavioral tests showed no significant differences between conditional cilia mutants and controls. This type of conditional allele approach could be used to distinguish which behavioral features of ciliopathies arise due to defects in neural development and which result from altered cell physiology. Ultimately, this could lead to an improved understanding of the basis for the cognitive deficits associated with human cilia disorders such as Bardet-Biedl syndrome, and possibly more common ailments including depression and schizophrenia.
Postnatal corticosteroids improve respiratory status and facilitate respiratory support weaning in preterm infants with bronchopulmonary dysplasia (BPD). Older literature describes characteristic cytokine profiles in tracheal aspirates (TA) of BPD patients which are altered with corticosteroids. Corticosteroids also influence peripheral blood T-cell presence. However, little is known regarding TA T-cell phenotype and cytokine production before or after exogenous corticosteroids. We hypothesized that postnatal dexamethasone alters the TA T-cell cytokine profiles of preterm infants. TA samples were collected from 14 infants born from 23 0/7 to 28 6/7 weeks who were mechanically ventilated for at least 14 days. Samples were collected up to 72 h before a ten-day dexamethasone course and again 1 to 3 calendar days after dexamethasone initiation. The primary outcome was change in T cell populations present in TA and their intracellular cytokine profile after dexamethasone treatment, ascertained via flow cytometry. Following dexamethasone treatment, there were significant decreases in respiratory severity score (RSS), percent CD4+IL-6+ cells, CD8+IL-6+ cells, CXCR3+IL-6+ cells, and CXCR3+IL-2+ cells and total intracellular IFN-γ in TA. RSS significantly correlated with TA percent CD4+IL-6+ cells. To our knowledge, this is the first study demonstrating that dexamethasone reduced T-cell IL-6 and this reduction was associated with improved RSS in pre-term infants with evolving BPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.