Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO 2 concentrations ([CO 2 ]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO 2 ], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO 2 ] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate-driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate-driven changes in streamflow are likely to reduce abundance of dominant, native, early-successional tree species, favor herbaceous species and both drought-tolerant and late-successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate-driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian ecosystems to allow rapid detection and response to undesirable ecological change.