Four different formulations of phosphate glasses in the system P 2 O 5 -CaO-Na 2 O-TiO 2 were developed. Their physicochemical, morphologic, and structural evolution was analyzed during in vitro degradation in SBF (simulated body fluid) at 37°C up to 16 weeks. The results showed that the addition of TiO 2 into the glass system enhanced both the elastic modulus and the chemical durability of the glasses. Indeed, the elastic modulus increased from 66.6 to 75.95 GPa and the weight loss percentage diminished from 1.6% to 0.3% with the addition of 8 mol% TiO 2 . A uniform and superficial degradation mechanism could be observed throughout the dissolution time by means of environmental scanning electron microscopy (ESEM), inductively coupled plasma mass spectroscopy (ICP-MS), and Raman spectroscopy. The degradation process undergone by these glasses allows them to maintain their mechanical properties during the degradation process. Therefore, these materials offer an interesting choice for slowly resorbable materials in biomedical applications.
This work describes the design and implementation of an electromagnetic inertial microgenerator for energy scavenging from ambient vibrations. The structure of the device is based in a mechanical resonator formed by a permanent magnet (inertial mass) mounted on a polymeric membrane, in combination with a fixed micromachined coil. ANSYS simulations are carried out to investigate the influence of the resonator geometry on the resonant frequency and on the parasitic damping, and to analyze the optimum geometry of the coil for optimization of the electromagnetic coupling in the devices. Generator prototypes have been fabricated with a modular manufacturing process in which the electromagnetic converter and the mechanical resonator are manufactured separately, diced and then assembled. The experimental results show the ability of these devices to generate power levels in the range of 50 lW with output voltages in the range of hundreds of mV. The parasitic damping of the resonator structures is estimated from the fitting of the experimental data, and suggests the existence of an intrinsic limitation of the polymers related to spring stiffening effects at large excitation amplitudes. The comparison of the simulations and the experimental results indicate that further optimizations of this parameter and of the coil series resistance would allow increasing the generated power in more than one order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.