Micro-computed tomography (μCT) is a new and emerging technique for the nondestructive assessment and analysis of the three-dimensional trabecular bone architecture. The applications of μCT with respect to the analysis of bone are manyfold. Nevertheless, it also holds high promise for the microstructural measurement and analysis of porous biomaterials. For the purpose of the study, a desk-top μCT providing a nominal isotropie resolution of 14 μm was used. Since the polymeric material has a very low X-ray absorption coefficient, the scaffolds were stained prior to measurement using a commercial X-ray contrast agent. This allowed not only to acquire important microstructural features of the diree-dimensional scaffold but also to compute standard structural indices such as BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp and the degree of anisotropy (DA) using mean intercept length measurements. The preliminary results show that different types of scaffolds can be distinguished both qualitatively (visualization) and quantitatively (morphometry) provided an adequate X-ray staining technique is used. It can be concluded that, in the future, μCT may be of considerable help in basic as well as in applied research and development.
Two calcium phosphate cements, one monophasic and the other biphasic, have been used as bone void filler in a sheep model. The cements were injected into a slot defect in the proximal tibia and into a cylindrical defect in the distal femur. In this study, we focused on the resorption pattern of the two cement formulations and the subsequent biologic reaction. Bone remodeling occurred synchronously with the resorption of the implant material in a creeping substitution process. Cracks and pores in the monophasic cement were filled with osseous tissues. The biphasic cement showed faster resorption of the matrix. The more slowly resorbing granules were surrounded by newly grown bone, thus providing an inverse scaffold for cancellous bone regeneration. In highly loaded areas, the long-term support function of the fixation appears to be critical. Because cortical bridging of the defects was seen in only one case, it can be concluded that calcium-phosphate cements are preferentially suitable as cancellous bone substitute materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.