Alginate has been widely used in various applications since its first extraction. What makes this biopolymer useful is its high biocompatibility and humid gelation conditions. Both of these features bring it into prominence as an ideal immobilization material. However, there are some complicated aspects of cell immobilization using alginate biopolymers. This review discusses and clarifies these crucial points, using as an example the bioprocessing of highly fragile cells (hybridoma cells). The review focuses on the cultivation and production of alginate encapsulated cells.
Human cardiac troponin-I (cTnI) is one of the most sensitive and specific indicators, used in the diagnosis of myocardial infarction. To produce the protein efficiently, Escherichia coli and Pichia pastoris systems were used. Initial trials for the expression in E. coli were not successful, although different expression vectors with different promoters were tested. This led us to use P. pastoris for the expression. After several trials with two different expression strains of P. pastoris, it was concluded that P. pastoris was also not an optimal expression host for cTnI. Comprehensive analysis of the expression systems indicated that an efficient expression is only possible when the gene is optimized for expression in E. coli. For this purpose, the gene was optimized in-silico, but edited manually afterwards. It was synthesized and cloned into pQE-2 vector. Expression was performed using routine experimental conditions. Thus, cTnI could be efficiently expressed from the optimized gene in E. coli. The expression and purification were practical and may be used for commercial purposes since a total yield of 25µg highly pure protein per milliliter of culture could be obtained. The protein was in its ready-to-use form for many biological applications, including as a standard in diagnostic tests and an antigen for antibody production.
When Paul Erlich postulated the idea of "magic bullet" in the early part of 20th century, he only had the findings of a research, regarding the presence of humoral immunity, performed by Emil von Behring and Kitasato Shibasaburo.. There was no concrete data about the presence of antibodies in those days. According to the idea, "if a compound could be made that selectively targeted a disease-causing organism, then a toxin for that organism could be delivered along with the agent of selectivity". If the point in the technology of monoclonal antibody generation that we have reached from '80s to present is considered, it can be claimed that we have started to go beyond the technology realizing the fighting strategy principally proposed by Paul Erlich at those times. The period starting with the production of fully murine antibodies in the first years exhibited a fast-growing trend with the help of recombinant
Human creatine kinase MB (hCKMB) is one of the most preferred biomarkers used for the diagnosis of acute coronary syndrome due to its high sensitivity and specificity. The increasing need for highly purified and biologically active hCKMB in the field of diagnostics makes its production valuable. Currently, the production of hCKMB is mainly achieved in methylotrophic yeast, Pichia pastoris, because the production in Escherichia coli is challenging and generally yields an inactive enzyme with a low quantity. With the aim of finding the best way for the high-yield production of active hCKMB in E. coli, an efficient strategy was developed using a construct allowing tandem expression of each subunit with 2 different tags. The strategy allowed the efficient expression and separate characterization of each subunit and 1-step purification of the heterodimeric protein into homogeneity. The heterodimeric protein displayed more than 11-fold greater specific activity than the commercially available one. The production strategy described in this study shows a clear advantage over the currently used ones and can be made available not only for laboratory scale production but also for commercial production. Our study is also a well-suited example for the studies in which novel protein expression strategies are needed to achieve greater yields with higher purities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.