Collagen remodeling is an integral part of tissue development, maintenance, and regeneration, but excessive remodeling is associated with various pathologic conditions. The ability to target collagens undergoing remodeling could lead to new diagnostics and therapeutics as well as applications in regenerative medicine; however, such collagens are often degraded and denatured, making them difficult to target with conventional approaches. Here, we present caged collagen mimetic peptides (CMPs) that can be phototriggered to fold into triple helix and bind to collagens denatured by heat or by matrix metalloproteinase (MMP) digestion. Peptidebinding assays indicate that the binding is primarily driven by stereo-selective triple-helical hybridization between monomeric CMPs of high triple-helical propensity and denatured collagen strands. Photo-triggered hybridization allows specific staining of collagen chains in protein gels as well as photo-patterning of collagen and gelatin substrates. In vivo experiments demonstrate that systemically delivered CMPs can bind to collagens in bones, as well as prominently in articular cartilages and tumors characterized by high MMP activity. We further show that CMP-based probes can detect abnormal bone growth activity in a mouse model of Marfan syndrome. This is an entirely new way to target the microenvironment of abnormal tissues and could lead to new opportunities for management of numerous pathologic conditions associated with collagen remodeling and high MMP activity.A s the most abundant protein in mammals, collagens play a crucial role in tissue development and regeneration, and their structural or metabolic abnormalities are associated with debilitating genetic diseases and various pathologic conditions. Although collagen remodeling occurs during development and normal tissue maintenance, particularly for renewing tissues (e.g., bones), excess remodeling activity is commonly seen in tumors, arthritis, and many other chronic wounds. During collagen remodeling, large portions of collagens are degraded and denatured by proteolytic enzymes, which can be explored for diagnostic and therapeutic purposes. Since unstructured proteins are not ideal targets for rational drug design, library approaches have been employed to develop monoclonal antibody (1, 2) and peptide probes (3) that specifically bind to cryptic sites in collagen strands that become exposed when denatured. However, these probes suffer from poor pharmacokinetics (4), and/or low specificity, and binding affinity (5).We envisioned that triple helix, the hallmark structural feature of collagen, could provide a unique targeting mechanism for the denatured collagens. The triple helix is nearly exclusively seen in collagens except as small subdomains in a few noncollagen proteins (6). Considering its striking structural similarity to the DNA double helix in terms of multiplex formation by periodic interchain hydrogen bonds along the polymer backbone (6), we thought that a small peptide sequence with strong triple-helix prope...
Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.
Solutions and melts of stiff ('rod-like') macromolecules often exhibit nematic liquid crystalline phases characterized by orientational, but not positional, molecular order. Smectic phases, in which macromolecular rods are organized into layers roughly perpendicular to the direction of molecular orientation, are rare, owing at least in part to the polydisperse nature (distribution of chain lengths) of polymers prepared by conventional polymerization processes. Bacterial methods for polypeptide synthesis, in which artificial genes encoding the polymer are expressed in bacterial vectors, offer the opportunity to make macromolecules with very well defined chain lengths. Here we show that a monodisperse derivative of poly(gamma-benzyl alpha,L-glutamate) prepared in this way shows smectic ordering in solution and in films. This result suggests that methods for preparing monodisperse polymers might provide access to new smectic phases with layer spacings that are susceptible to precise control on the scale of tens of nanometres.
Recent widespread interest in the development of engineered tissue and organ replacement therapies has prompted demand for new approaches to immobilize exogenous components to natural collagen. Chemical coupling of synthetic moieties to amino acid side chains has been commonly practiced for such purposes; however, such coupling reactions are difficult to control on large proteins and are generally not conducive to modifying integrated collagen scaffolds that contain live cells and tissues. As an alternative to the conventional "covalent" modification method, we have developed a novel "physical" modification technique that is based on collagen's native ability to associate into a triple-helical molecular architecture. Here, we present a finding that collagen mimetic peptides (CMPs) of sequence -(Pro-Hyp-Gly)x- exhibit strong affinity to both native and gelatinized type I collagen under controlled thermal conditions. We also show that the cell adhesion characteristics of collagen can be readily altered by applying a poly(ethylene glycol)-CMP conjugate to a prefabricated collagen film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.