Colorectal cancer incidences are on a rise in India. In this study, we have analyzed the mutation frequencies of six potential biomarkers, their coexistence, association with clinicopathological characteristics, and tumor location in Indian colorectal cancer patients. Next-generation sequencing was performed to identify mutations in the six potential biomarker genes using formalin-fixed paraffin-embedded tissue blocks of 112 colorectal cancer patients. The mutation frequency observed in KRAS, BRAF, PIK3CA, NRAS, TP53, and APC was 35.7%, 7.1%, 16.1%, 6.3%, 39.3%, and 29.5%, respectively. The significant associations of mutations were KRAS with age less than 60 years (p = 0.041), PIK3CA with males (p = 0.032), tumor stage I-II (p = 0.013), lack of metastasis in lymph nodes (p = 0.040), NRAS with rectum (p = 0.002), and APC with T2 stage of tumor growth (p = 0.013). No single patient harbored mutations in these six genes or any five genes simultaneously. Significance was noted in coexistence of KRAS with APC (p = 0.024) and mutual exclusion of KRAS with BRAF (p = 0.029). PIK3CA exon 9 was observed to be more frequently associated with KRAS mutations than PIK3CA exon 20 (p = 0.072). NRAS mutations were mutually exclusive with BRAF and PIK3CA mutations. As per our knowledge, this is the first next-generation sequencing-based biomarker study in Indian colorectal cancer patients. Frequent coexistence of gene mutations in pairs and triplets suggests that synergistic effect of overlapping mutations might further trigger the disease. In addition, infrequent coexistence of multiple gene mutations hints toward different signaling pathways for colorectal cancer tumorigenesis.
Mutation frequencies of common genetic alterations in colorectal cancer have been in the spotlight for many years. This study highlights few rare somatic mutations, which possess the attributes of a potential CRC biomarker yet are often neglected. Next-generation sequencing was performed over 112 tumor samples to detect genetic alterations in 31 rare genes in colorectal cancer. Mutations were detected in 26/31 (83.9 %) uncommon genes, which together contributed toward 149 gene mutations in 67/112 (59.8 %) colorectal cancer patients. The most frequent mutations include KDR (19.6 %), PTEN (17 %), FBXW7 (10.7 %), SMAD4 (10.7 %), VHL (8 %), KIT (8 %), MET (7.1 %), ATM (6.3 %), CTNNB1 (4.5 %) and CDKN2A (4.5 %). RB1, ERBB4 and ERBB2 mutations were persistent in 3.6 % patients. GNAS, FGFR2 and FGFR3 mutations were persistent in 1.8 % patients. Ten genes (EGFR, NOTCH1, SMARCB1, ABL1, STK11, SMO, RET, GNAQ, CSF1R and FLT3) were found mutated in 0.9 % patients. Lastly, no mutations were observed in AKT, HRAS, MAP2K1, PDGFR and JAK2. Significant associations were observed between VHL with tumor site, ERBB4 and SMARCB1 with tumor invasion, CTNNB1 with lack of lymph node involvement and CTNNB1, FGFR2 and FGFR3 with TNM stage. Significantly coinciding mutation pairs include PTEN and SMAD4, PTEN and KDR, EGFR and RET, EGFR and RB1, FBXW7 and CTNNB1, KDR and FGFR2, FLT3 and CTNNB1, RET and RB1, ATM and SMAD4, ATM and CDKN2A, ERBB4 and SMARCB1. This study elucidates few potential colorectal cancer biomarkers, specifically KDR, PTEN, FBXW7 and SMAD4, which are found mutated in more than 10 % patients.
The COVID-19 global pandemic is not even over yet but it has already taught us a lot of lessons -the hard way. The vast majority of the global community has blamed the Chinese Illegal wildlife markets for the origin of this pandemic. Through careful scientific analysis, I have explained in this article that we don't need such wildlife markets for these kinds of outbreaks to occur in the future. I have also explained how India which is the second-most populous country in the world, could be the origin of the next outbreak, even though such wildlife markets are either very rare or do not exist at all in India.
BackgroundIncidence of Chronic Myeloid Leukemia (CML) is continuously increasing and expected to reach 100,000 patients every year by 2030. Though the discovery of Imatinib Mesylate (IM) has brought a paradigm shift in CML treatment, 20% patients show resistance to this tyrosine kinase inhibiter (TKI). Therefore, it is important to identify markers, which can predict the occurrence and prognosis of CML. Clinical Exome Sequencing, panel of more than 4800 genes, was performed in CML patients to identify prognostic and susceptibility markers in CML.MethodsEnrolled CML patients (n=18) were segregated as IM responders (n=10) and IM failures (n=8) as per European Leukemia Net (ELN), 2013 guidelines. Healthy controls (n=5) were also enrolled. DNA from blood of subjects was subjected to Next Generation Sequencing. Rare mutations present in one patient group and absent in another group were considered as prognostic markers, whereas mutations present in more than 50% patients were considered as susceptibility markers.ResultMutations in genes associated with cancer related functions were found in different patient groups. Four variants: rs116201358, rs4014596, rs52897880 and rs2274329 in C8A, UNC93B1, APOH and CA6 genes, respectively, were present in IM responders; whereas rs4945 in MFGE8 was present in IM failures. Mutations in HLA-DRB1 (rs17878951), HLA-DRB5 (rs137863146), RPHN2 (rs193179333), CYP2F1 (rs116958555), KCNJ12 (rs76684759) and FUT3 (rs151218854) were present as susceptibility markers.ConclusionThe potential genetic markers discovered in this study can help in predicting response to IM as frontline therapy. Susceptibility markers may also be used as panel for individuals prone to have CML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.