Background
Microbial lipids are found to be an interesting green alternative to expand available oil sources for the chemical industry. Yeasts are considered a promising platform for sustainable lipid production. Remarkably, some oleaginous yeasts have even shown the ability to grow and accumulate lipids using unusual carbon sources derived from organic wastes, such as volatile fatty acids. Recent research efforts have been focused on developing rapid and accurate fluorometric methods for the quantification of intracellular yeast lipids. Nevertheless, the current methods are often tedious and/or exhibit low reproducibility.
Results
This work evaluated the reliability of different fluorescence measurements (fluorescence intensity, total area and fluorescence quantum yield) using Nile Red as lipid dye in two yeast strains (Yarrowia lipolytica ACA-DC 50109 and Cutaneotrichosporon curvatum NRRL-Y-1511). Different standard curves were obtained for each yeast specie. Fermentation tests were carried with 6-month difference to evaluate the effect of the fluorometer lamp lifetime on lipid quantification.
Conclusions
Fluorescence quantum yield presented the most consistent measurements along time and the closer estimations when compared with lipids obtained by conventional methods (extraction and gravimetrical determination). The need of using fluorescence quantum yield to estimate intracellular lipids, which is not the common trend in studies focused on microbial lipid production, was stressed. The information here provided will surely enable more accurate results comparison.
Microbial lipids for chemical synthesis are commonly obtained from sugar‐based substrates which in most cases is not economically viable. As a low‐cost carbon source, short‐chain fatty acids (SCFAs) that can be obtained from food wastes offer an interesting alternative for achieving an affordable lipid production process. In this study, SCFAs were employed to accumulate lipids using
Yarrowia lipolytica
ACA DC 50109. For this purpose, different amounts of SCFAs, sulfate, phosphate and carbon: phosphate ratios were used in both synthetic and real SCFAs‐rich media. Although sulfate limitation did not increase lipid accumulation, phosphate limitation was proved to be an optimal strategy for increasing lipid content and lipid yields in both synthetic and real media, reaching a lipid productivity up to 8.95 g/L h. Remarkably, the highest lipid yield (0.30 g/g) was achieved under phosphate absence condition (0 g/L). This fact demonstrated the suitability of using low‐phosphate concentrations to boost lipid production from SCFAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.