In this study, the failure mechanism of glass particle epoxy composites was investigated under compression and sliding wear. Random fiber distribution with minimum interfiber distance was modeled by representative volume elements (RVEs). Spherical and platelet type glass particles were used for the reinforcements. A numerical simulation of the elastic properties of composites was performed for a perfectly bonded interface, and the results were compared using the Mori Tanaka mean field approach. The elastic stiffness results indicated that the platelet reinforced composites bore more load than spherical ones because of the aspect ratio effects. The separation distance based cohesive zone model was applied to modeling the failure zone at the particle matrix interfaces to establish sliding wear. The effect of the perfectly bonded interface and the cohesive zone interface on overall stiffness and elasto-plastic behavior were discussed. The cohesive zone interface was found to be effective at the interface in terms of the strength and debonding characteristics of the composites. The results were compared with the sliding wear test results of glass particle reinforced composites. The numerical and sliding wear experimental results indicated that matrix yield stress, plastic strain, particle penetration at the contact interface and particle stress are found to be effective parameters for the debonding mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.