"This paper is a postprint of a paper submitted to and accepted for publication in IET Signal Processing and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library." [Full text of this article is not available in the UHRA]This study presents investigations into the effectiveness of the state-of-the-art speaker verification techniques (i.e. GMM-UBM and GMM-SVM) in mismatched noise conditions. Based on experiments using white and real world noise, it is shown that the verification performance offered by these methods is severely affected when the level of degradation in the test material is different from that in the training utterances. To address this problem, a modified realisation of the parallel model combination (PMC) method is introduced and a new form of test normalisation (T-norm), termed condition adjusted T-norm, is proposed. It is experimentally demonstrated that the use of these techniques with GMM-UBM can significantly enhance the accuracy in mismatched noise conditions. Based on the experimental results, it is observed that the resultant relative improvement achieved for GMM-UBM (under the most severe mismatch condition considered) is in excess of 70%. Additionally, it is shown that the improvement in the verification accuracy achieved in this way is higher than that obtainable with the direct use of PMC with GMM-UBM. Moreover, it is found that while the accuracy performance of GMM-SVM can also considerably benefit from the use of these techniques, the extensive computational cost involved in this case severely limits the use of such a combined approach in practice
A new approach to enhancing the accuracy of multimodal biometrics is investigated. The proposed approach, which involves combining score normalisation and qualitative-based fusion, is shown to considerably improve the accuracy of multimodal biometrics under different data conditions.
This paper presents an investigation into the effects, on the accuracy of multimodal biometrics, of introducing unconstrained cohort normalisation (UCN) into the score-level fusion process. Whilst score normalisation has been widely used in voice biometrics, its effectiveness in other biometrics has not been previously investigated. This study aims to explore the potential usefulness of the said score normalisation technique in face biometrics and to investigate its effectiveness for enhancing the accuracy of multimodal biometrics. The experimental investigations involve the two recognition modes of verification and open-set identification, in clean mixed-quality and degraded data conditions. Based on the experimental results, it is demonstrated that the capabilities provided by UCN can significantly improve the accuracy of fused biometrics. The paper presents the motivation for, and the potential advantages of, the proposed approach and details the experimental study.
This paper presents a new approach to Condition-adjusted T-Norm (CT-Norm) for speaker verification under significant mismatched noise conditions. The study is motivated by the fact that, whilst the standard CT-Norm method offers enhanced accuracy under mismatched data conditions, its effectiveness reduces with the increased severity of such conditions. The proposed approach attempts to address this challenge by providing a more effective reduction of data mismatch through the incorporation of multi-SNR UBMs (universal background models). The effectiveness of the proposed approach is demonstrated through experiments based on examples of real-world noise. It is shown that the superiority of the approach over CT-Norm is particularly significant for such excessive levels of test data degradation considered in the study as 5 dB and below. The paper provides a description of the characteristics of the proposed approach and details the experimental analysis of its effectiveness under different noise conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.