An additive layer manufacture (ALM) technique, electron beam melting, has been used for the production of simple geometries, from prealloyed Ti-6Al-4V powder. Microstructure, texture, and mechanical properties achieved under standard operating conditions have been investigated. Three transitional regions are observed with a change in microstructural formation dependent on the thermal mass of deposited material. Prior b-phase reconstruction, from room temperature a-phase electron backscatter diffraction (EBSD) data, reveals a strong texture perpendicular to the build axis. Variation of build temperature within the processing window of 898 K to 973 K (625°C to 700°C) is seen to have a significant effect on the properties and microstructure of both as-deposited and hot isostatically pressed (HIP) samples.
A case study is presented that examines the macrosegregation and grain structure present in a 12-tonne steel ingot, which was cast for experimental purposes. Details of the casting procedure were well documented and the resulting ingot was characterized using a number of techniques that measured chemical segregation, shrinkage, and porosity. The formation of the porosity and segregation patterns is discussed in reference to the particular grain structure observed in the ingot. It is hoped that this case study can be used as a tool for the validation of future macromodels.
A recently developed criterion for A-segregation in steel ingots and castings, based on a dimensionless Rayleigh number, is applied to case studies of two steel ingots. In both cases, experimentally obtained locations of A-segregation are correlated against Rayleigh numbers predicted through casting simulations. It is found that the value of 17±8 previously reported as the critical value for the Rayleigh criterion agrees well with the results of these case studies, but that 6 is an appropriate critical value if a conservative lower bound is sought. Limitations and sources of sensitivity in the application of the criterion are highlighted.
The present work explores the importance of model parameters and input variables when simulating the quenching of thick sectioned nuclear forgings. The modelling approach adopted uses values of specific heat capacity, containing latent heat release, to simulate cooling curves; rather than calculating transformation kinetics based upon a mathematical model. Termed the effective specific heat (Cpeff), two different methods were used to establish values: differential scanning calorimetry (DSC) and thermos dynamic predictive software. Values were then included in finite element (FE) models to simulate the characteristic cooling at the mid-wall position in a thick section forging and were validated against production thermocouple data. The investigation found that the formation of ferrite, bainite and martensite or lower bainite were all represented by the data established using DSC and critical formation temperatures were comparable with others in the literature. Conversely, values calculated using the thermodynamic software failed to represent ferrite formation and predicted different critical transformation temperatures for bainite. The simulated cooling curve that used the software predicted Cpeff data was comparable to the thermocouple data either side of the bainite transformation, however during the transformation the effects of latent heat on cooling rate were over predicting leading to disparities. The equivalent DSC cooling curves produced a near exact match.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.