Calendula officinalis Linn. (Asteraceae) is used medicinally in Europe, China and India amongst several places in the world. It is also known as "African marigold" and has been a subject of several chemical and pharmacological studies. It is used in traditional medicine, especially for wound healing, jaundice, blood purification, and as an antispasmodic. Chemical studies have underlined the presence of various classes of compounds, the main being triterpenoids, flavonoids, coumarines, quinones, volatile oil, carotenoids and amino acids. The extract of this plant as well as pure compounds isolated from it, have been demonstrated to possess multiple pharmacological activities such as anti-HIV, cytotoxic, antiinflammatory, hepatoprotective, spasmolytic and spasmogenic, amongst others. In this review, we have explored the phytochemistry and pharmacological activities of C. officinalis in order to collate existing information on this plant as well as highlight its multi-activity properties as a medicinal agent. This is as a result of the worldwide cultivation of the plant and increasing published reports on it.
Shade dried leaves of Ficus carica were extracted using petroleum ether (60-80°) and tested for antihepatotoxic activity on rats treated with 50 mg/kg of rifampicin orally. The parameters assessed were serum levels of glutamic oxaloacetate transaminase, glutamic pyruvic transaminase, bilirubin and histological changes in liver. Liver weights and pentobarbitione sleeping time as a functional parameter were also monitored. There was significant reversal of biochemical, histological and functional changes induced by rifampicin treatment in rats by petroleum ether extract treatment, indicating promising hepatoprotective activity.
Some novel benzimidazolyl chalcones were synthesized by condensation ofN-(4-(1H-benzo[d]imidazol-2-yl)phenyl)acetamide with aromatic aldehydes in presence of aqueous potassium hydroxide solution at room temperature. All the synthesized compounds were characterized on the basis of their IR,1H NMR spectroscopic data and elemental analysis. All the compounds have been screened for antimicrobial activity by the cup-plate method.
Background:The present communication deals with the identification and characterization of bioactive principles from the roots of Chlorophytum borivilianum.Method:Methanolic extract and its fractions were used to isolate different phytoconstituents. The structures of isolated compounds were characterized and elucidated with chemical and spectroscopic techniques such as Infra Red, Nuclear Mass Resonace and Mass spectroscopy experiments. Fatty acids were characterized by GC-MS analysis.Result:Three Fatty acids were isolated and confirmed. One sterol stigmasterol was isolated. One new saponin named as Chlorophytoside-I (3β, 5α, 22R, 25R)-26-(β-D-glucopyranosyloxy)-22-hydroxy-furostan-12-one-3 yl O-β-D-galactopyranosyl (1-4) glucopyranoside was isolated.Conclusion:The roots of Chlorophytum borivilianum contain three important fatty acids, common sterol stigmasterol and one furostanol saponins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.