We perform atomistic simulations of spin transfer torque switching dynamics in CoFeB/MgO/CoFeB magnetic tunnel junctions. We base our study on Slonczewski's model parametrized following the approach of Zhang, Levy, and Fert. We utilize excitation modes and the contour integral of the magnetization to perform a deeper analysis of the switching mechanism driven by spin transfer torque. Our results show a magnetization reversal driven by the combination of coherent and nonuniform excitation modes. These can be nonuniform and initiated by a coherent mode of the magnetization, or domain wall nucleated depending on the lateral size, temperature, and current density injected into the system. Larger current densities result in stronger excitation of nonuniform modes making the switching more easily subjected to thermal excitations and structural imperfections such as edge damage. Our findings agree with experimental works on spin transfer torque switching in similar CoFeB/MgO-based systems, and they suggest the presence of complex features in the magnetization dynamics. The analysis and the results presented here can help to gain a deeper understanding of spin transfer torque dynamics in nanoscale devices.
We theoretically investigate the temperature and thickness dependence of the effective Gilbert damping constant (α) in the Co-Fe-B/MgO system using atomistic spin dynamics. We consider a high damping constant at the interface layer and a low damping constant for the bulklike layers due to large interfacial spin-orbit coupling. We find a strong dependence of the effective Gilbert damping with the film thickness, in quantitative agreement with experimental data. The temperature dependence of the effective damping arising from thermal-spin fluctuations up to temperatures of 400 K is weak, with no apparent change over the studied temperature range. Interestingly, we find that the temperature produces a different effect: a statistical fluctuation of the Gilbert damping parameter for a given relaxation induced solely from the finite size of the system. This statistical variation of the Gilbert damping is an intrinsic effect and is important for spintronic devices operating at gigahertz frequencies, where the dynamic response must be carefully controlled.
The discovery of magnetization switching via spin transfer torque (STT) in PMA-based MTJs has led to the development of next-generation magnetic memory technology with high operating speed, low power consumption and high scalability. In this work, we theoretically investigate the influence of finite size and temperature on the mechanism of magnetization switching in CoFeB–MgO based MTJ to get better understanding of STT-MRAM fundamentals and design. An atomistic model coupled with simultaneous solution of the spin accumulation is employed. The results reveal that the incoherent switching process in MTJ strongly depends on the system size and temperature. At 0 K, the coherent switching mode can only be observed in MTJs with the diameter less than 20 nm. However, at any finite temperature, incoherent magnetization switching is thermally excited. Furthermore, increasing temperature results in decreasing switching time of the magnetization. We conclude that temperature dependent properties and thermally driven reversal are important considerations for the design and development of advanced MRAM systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.