Modeling transistors at terahertz frequencies is challenging, because electromagnetic and quantum effects that are negligible in lower frequencies become limiting factors in device performance. Though previous work has focused on modeling the channel of a high-electron mobility transistor (HEMT) using hydrodynamic equations, a more complete toolset is needed to describe submillimeter-wave device gain performance. This paper introduces a simulator that couples fullwave Maxwell's equations with Schrodinger-based charge transport equations, and is used to evaluate the gain performance of a GaN HEMT at THz. This novel simulator is also used to evaluate the effect on gain when a resonant tunneling diode (RTD) is integrated with a HEMT. Upon validation with published work, we state the feasibility of RTD-gated GaN HEMT structures that have resonances up to 2.3 THz and gain up to 6 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.