SummaryThe deposition of proteins on blood-contacting surfaces is known to be a determining factor in subsequent thromboembolic events. The composition of the protein layers and how they change with time are unknown. To generate information relevant to these questions, the quantities of albumin, fibrinogen and IgG adsorbed on seven surfaces from human plasma as a function of time were measured using a tracelabeling method. Materials studied include several segmented polyether-urethanes, glass, siliconized glass (SG), polystyrene (PS) and polyethylene (PE).Fibrinogen, surprisingly, was not adsorbed from plasma to any of the hydrophilic surfaces. On PE and SG adsorption passed through an early maximum (before 2 min) then declined to near zero. Only on PS was adsorption substantial and constant with time. Albumin was also not detected on the hydrophilic materials, but was adsorbed substantially on the hydrophobic surfaces. IgG was detected on all surfaces, although in relatively low surface concentrations.These results suggest: 1. that the plasma itself interacts with initially adsorbed proteins, 2. that the role of fibrinogen adsorption in foreign-surface initiated thrombosis may need to be reevaluated and 3. that since the major plasma proteins are only minimally adsorbed, trace proteins may be important in blood-material interactions.
SYNOPSISAdsorption of fibrinogen and albumin from solutions of the proteins singly and in mixtures was studied. A variety of surfaces with varying degrees of hydrophilicity and thrombogenicity was investigated. Adsorption behavior shows a strong dependence on surface properties. All surfaces show a preference for fibrinogen, and the degree of preference appears to correlate with thrombogenic tendency and platelet reactivity.
EXPERIMENTALAdsorption was studied by radioiodine labeling of proteins using the iodine monochloride method, as described elsewhere [6]. The use of both
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.