Calsyntenin‐2 (Clstn2) is the synaptic protein, which belongs to the superfamily of cadherins, playing an important role in learning and memory. We recently reported that Clstn2 knockout mice (Clstn2‐KO) have a deficit of GABAergic interneurons, associated with hyperactivity, deficient spatial memory, and social behavior. Therefore, we sought to characterize morphometric features of the ultrastructure of synaptic complexes of hippocampal and cortical neurons in Clstn2‐KO mice, using high magnification electron microscopy. Morphometric analysis revealed a reduction of symmetric (inhibitory) synaptic density, length of synaptic contacts, and postsynaptic density in neurons of Clstn2‐KO mice. Moreover, cortical neurons of Clstn2‐KO mice were characterized by the predominance of the simplified type of synapses with the emergence of negative curvature of the synaptic zone in Clstn2‐KO mice. Notably, presynaptic zones of cortical neurons of Clstn2‐KO mice were characterized by the increased number of synaptic vesicles in opposite to the decreased number of synaptic vesicles in the presynaptic zones of hippocampal neurons. Overall, we found that lack of calsyntenin‐2 leads to the striking architectonic alterations of synaptic complexes in the mouse brain, disrupting synaptic density, shape, and connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.