We found initial evidence of a positive correlation between plasma BDNF levels and BMI, low-density lipoprotein and total cholesterol in drug-naïve patients with BD-II. The specific function of BDNF in regulating and maintaining peripheral metabolic health requires additional investigation.
In this study, the pull-in phenomenon of a Nano-actuator is investigated employing a nonlocal Bernoulli-Euler beam model with clamped-clamped conditions. The model accounts for viscous damping, residual stresses, the van der Waals (vdW) force and electrostatic forces with nonlocal effects. The hybrid differential transformation/finite difference method (HDTFDM) is used to analyze the nonlocal effects on a graphene sheet nanobeam, which is electrostatically actuated under the influence of the coupling effect, the von Kármán nonlinear strains and the fringing field effect. The pull-in voltage as calculated by the presented model deviates by no more than 0.29% from previous literature, verifying the validity of the HDTFDM. Furthermore, the nonlocal nonlinear behavior of the electrostatically actuated nanobeam is investigated, and the effects of viscous damping, residual stresses, and length-gap ratio are examined in detail. Overall, the results reveal that small scale effects significantly influence the characteristics of the graphene sheet nanobeam actuator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.