The thermal conversion of solid fuel is considered (for the example of biomass), with assessment of the yield of volatiles and coke residue. The optimal temperature range for its pyrolysis (the range corresponding to maximum heat of combustion of the gases per unit mass of the initial product) is identified. The influence of steam and air flow rates on the gasification products is studied. A system for the generation of thermal and elec trical energy in the steam-gas cycle is proposed, with a biomass gasification unit. The energy loads of a popula tion center are calculated, with engineering and economic assessment of the steam-gas cycle. Biomass based cycles are compared, from the perspective of the energy efficiency of a cogeneration system.
The article examines three different kinds of mathematical model of nearly zero energy building. The first model enables to optimize the structure and the definition of key parameters of energy efficient building. The second model is necessary for passive house designing with renewable energy sources. The third model should be used for monitoring and control of energy supply system of nearly zero energy building through year every hour of winter and summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.