Additive manufacturing (AM) processes can produce three-dimensional (3D) near-net-shape parts based on computer-aided design (CAD) models. Compared to traditional manufacturing processes, AM processes can generate parts with intricate geometries, operational flexibility and reduced manufacturing time, thus saving time and money. On the other hand, AM processes face complex issues, including poor surface finish, unwanted microstructure phases, defects, wear tracks, reduced corrosion resistance and reduced fatigue life. These problems prevent AM parts from real-time operational applications. Post-processing techniques, including laser shock peening, laser polishing, conventional machining methods and thermal processes, are usually applied to resolve these issues. These processes have proved their capability to enhance the surface characteristics and physical and mechanical properties. In this study, various post-processing techniques and their implementations have been compiled. The effect of post-processing techniques on additively manufactured parts has been discussed. It was found that laser shock peening (LSP) can cause severe strain rate generation, especially in thinner components. LSP can control the surface regularities and local grain refinement, thus elevating the hardness value. Laser polishing (LP) can reduce surface roughness up to 95% and increase hardness, collectively, compared to the as-built parts. Conventional machining processes enhance surface quality; however, their influence on hardness has not been proved yet. Thermal post-processing techniques are applied to eliminate porosity up to 99.99%, increase corrosion resistance, and finally, the mechanical properties’ elevation. For future perspectives, to prescribe a particular post-processing technique for specific defects, standardization is necessary. This study provides a detailed overview of the post-processing techniques applied to enhance the mechanical and physical properties of AM-ed parts. A particular method can be chosen based on one’s requirements.
Laser Melting Deposition (LMD) is a metal printing technique that allows for the manufacturing of large objects by Directed Energy Deposition. Due to its versatility in variation of parameters, the possibility to use two or more materials, to create alloys in situ or produce multi-layer structures, LMD is still being scientifically researched and is still far from industrial maturity. The structural testing of obtained samples can be time consuming and solutions that can decrease the samples analysis time are constantly proposed in the scientific literature. In this manuscript we present a quality improvement study for obtaining defect-free bulk samples of Ti6Al4V under X-Ray Computed Tomography (XCT) by varying the hatch spacing and distance between planes. Based on information provided by XCT, the experimental conditions were changed until complete elimination of porosity. Information on the defects in the bulk of the samples by XCT was used for feedback during parameters tuning in view of complete removal of pores. The research time was reduced to days instead of weeks or months of samples preparation and analysis by destructive metallographic techniques.
Powder flow and temperature distribution are recognized as essential factors in the laser melting deposition (LMD) process, which affect not only the layer formation but also its characteristics. In this study, two mathematical models were developed. Initially, the three-jet powder flow in the Gaussian shape was simulated for the LMD process. Next, the Gaussian powder flow was coaxially added along with the moving laser beam to investigate the effect of powder flow on temperature distribution at the substrate. The powder particles’ inflight and within melt-pool heating times were controlled to avoid vapors or plasma formation due to excessive heat. Computations were carried out via MATLAB software. A high-speed imaging camera was used to monitor the powder stream distribution, experimentally, while temperature distribution results were compared with finite element simulations and experimental analyses. A close correlation was observed among analytical computation, numerical simulations, and experimental results. An investigation was conducted to investigate the effect of the focal point position on powder stream distribution. It was found that the focal point position plays a key role in determining the shape of the powder stream, such that an increment in the distance from the focus point will gradually transform the powder stream from the Gaussian to Transition, and from the Transition to Annular streams. By raising the powder flow rate, the attenuation ratio prevails in the LMD process, hence, decreasing the laser energy density arriving at the substrate. The computations indicate that, if the particle’s heating temperature surpasses the boiling point, a strong possibility exists for vapors and plasma formation. Consequently, an excessive amount of laser energy is absorbed by the produced vapors and plasma, thus impeding the deposition process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.