Nanoparticles are promising mediators to enable nasal systemic and brain delivery of active compounds. However, the possibility of reaching therapeutically relevant levels of exogenous molecules in the body is strongly reliant on the ability of the nanoparticles to overcome biological barriers. In this work, three paradigmatic nanoformulations vehiculating the poorly soluble model drug simvastatin were addressed: (i) hybrid lecithin/chitosan nanoparticles (LCNs), (ii) polymeric poly-ε-caprolactone nanocapsules stabilized with the nonionic surfactant polysorbate 80 (PCL_P80), and (iii) polymeric poly-ε-caprolactone nanocapsules stabilized with a polysaccharide-based surfactant, i.e., sodium caproyl hyaluronate (PCL_SCH). The three nanosystems were investigated for their physicochemical and structural properties and for their impact on the biopharmaceutical aspects critical for nasal and nose-to-brain delivery: biocompatibility, drug release, mucoadhesion, and permeation across the nasal mucosa. All three nanoformulations were highly reproducible, with small particle size (∼200 nm), narrow size distribution (polydispersity index (PI) < 0.2), and high drug encapsulation efficiency (>97%). Nanoparticle composition, surface charge, and internal structure (multilayered, core–shell or raspberry-like, as assessed by small-angle neutron scattering, SANS) were demonstrated to have an impact on both the drug-release profile and, strikingly, its behavior at the biological interface. The interaction with the mucus layer and the kinetics and extent of transport of the drug across the excised animal nasal epithelium were modulated by nanoparticle structure and surface. In fact, all of the produced nanoparticles improved simvastatin transport across the epithelial barrier of the nasal cavity as compared to a traditional formulation. Interestingly, however, the permeation enhancement was achieved via two distinct pathways: (a) enhanced mucoadhesion for hybrid LCN accompanied by fast mucosal permeation of the model drug, or (b) mucopenetration and an improved uptake and potential transport of whole PCL_P80 and PCL_SCH nanocapsules with delayed boost of permeation across the nasal mucosa. The correlation between nanoparticle structure and its biopharmaceutical properties appears to be a pivotal point for the development of novel platforms suitable for systemic and brain delivery of pharmaceutical compounds via intranasal administration.
Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que−2-hydroxypropylated−β-cyclodextrin (Que/HP-β-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que−methyl−β-cyclodextrin (Que/Me-β-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-β-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-β-CD more than with Me-β-CD, possibly revealing the presence of more than one HP-β-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-β-CD and Que/HP-β-CD products was approximately 7−40 times and 14−50 times as high as for pure Que at pH 1.2−6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.
Pleural mesothelioma is a lung diffuse tumor, whose complete resection is unlikely. Consequently, metastases reappear where the primary tumor was removed. This paper illustrates the orphan medicine designation procedure of an intracavitary cisplatin film and related pharmaceutical development aspects requested by the European Medicines Agency (EMA) in its Scientific Advice. Since cisplatin pharmacokinetics from the implanted film in sheep resulted substantially modified compared to intravenous administration, the formation of a cisplatin/hyaluronan complex had been hypothesized. Here, the interaction between sodium hyaluronate (NaHA) and cisplatin (CisPt) was demonstrated. Size exclusion chromatography qualitatively evidenced the complex in the film-forming mixture, only showing the NaHA peak. Atomic absorption spectroscopy of the corresponding fraction revealed platinum, confirming the interaction. Reverse phase HPLC quantified about 5% free cisplatin in the film-forming mixture, indirectly meaning that 95% was complexed. Finally, a study of CisPt release from the film assessed how CisPt/NaHA complex affected drug availability. In water, a medium without chloride ions, there was no release and the film remained intact for 48 h and longer, whereas the placebo film dissolved in 15 min. In 0.9% NaCl medium, the film became more soluble, dissolving within 3–4 h. However, cisplatin release was still controlled by the existing complex in solution until chloride ions displaced it. While the film modified its dissolution with aging, CisPt release remained unaffected (90% released in 48 h).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.