Fluorescence laser-scanning microscopy (LSM) is experiencing a revolution thanks to new single-photon (SP) array detectors, which give access to an entirely new set of single-photon information. Together with the blooming of new SP LSM techniques and the development of tailored SP array detectors, there is a growing need for (i) DAQ systems capable of handling the high-throughput and high-resolution photon information generated by these detectors, and (ii) incorporating these DAQ protocols in existing fluorescence LSMs. We developed an open-source, low-cost, multi-channel time-tagging module (TTM) based on a field-programmable gate array that can tag in parallel multiple single-photon events, with 30 ps precision, and multiple synchronisation events, with 4 ns precision. We use the TTM to demonstrate live-cell super-resolved fluorescence lifetime image scanning microscopy and fluorescence lifetime fluctuation spectroscopy. We expect that our BrightEyes-TTM will support the microscopy community in spreading SP-LSM in many life science laboratories.
The single-photon timing and sensitivity performance and the imaging ability of asynchronous-readout single-photon avalanche diode (SPAD) array detectors have opened up enormous perspectives in fluorescence (lifetime) laser scanning microscopy (FLSM), such as super-resolution image scanning microscopy and high-information content fluorescence fluctuation spectroscopy (FFS). However, the strengths of these FLSM techniques depend on the many different characteristics of the detector, such as dark-noise, photon-detection efficiency, after-pulsing probability, and optical-cross talk, whose overall optimization is typically a trade-off between these characteristics. To mitigate this trade-off, we present a novel SPAD array detector with an active cooling system, which substantially reduces the dark-noise without significantly deteriorating any other detector characteristics. In particular, we show that lowering the temperature of the sensor to -15°C significantly improves the signal-to-noise ratio due to a 10-fold decrease in the dark-count rate compared to room temperature. As a result, for imaging, the laser power can be decreased by more than a factor of three, which is particularly beneficial for live-cell super-resolution imaging, as demonstrated in fixed and living cells expressing GFP-tagged proteins. For FFS, together with the benefit of the reduced laser power, we show that cooling the detector is necessary to remove artifacts in the correlation function, such as spurious negative correlations observed in the hot elements of the detector, i.e., elements whose dark-noise is substantially higher than the median value. Overall, this detector represents a further step towards the integration of SPAD array detectors in any FLSM system.
The single-photon timing and sensitivity performance and the imaging ability of asynchronous-readout single-photon avalanche diode (SPAD) array detectors have opened up enormous perspectives in fluorescence (lifetime) laser scanning microscopy (FLSM), such as super-resolution image scanning microscopy and high-information content fluorescence fluctuation spectroscopy. However, the strengths of these FLSM techniques depend on the many different characteristics of the detector, such as dark noise, photon-detection efficiency, after-pulsing probability, and optical cross talk, whose overall optimization is typically a trade-off between these characteristics. To mitigate this trade-off, we present, to our knowledge, a novel SPAD array detector with an active cooling system that substantially reduces the dark noise without significantly deteriorating any other detector characteristics. In particular, we show that lowering the temperature of the sensor to −15°C significantly improves the signal/noise ratio due to a 10-fold decrease in the dark count rate compared with room temperature. As a result, for imaging, the laser power can be decreased by more than a factor of three, which is particularly beneficial for live-cell super-resolution imaging, as demonstrated in fixed and living cells expressing green-fluorescent-protein-tagged proteins. For fluorescence fluctuation spectroscopy, together with the benefit of the reduced laser power, we show that cooling the detector is necessary to remove artifacts in the correlation function, such as spurious negative correlations observed in the hot elements of the detector, i.e., elements for which dark noise is substantially higher than the median value. Overall, this detector represents a further step toward the integration of SPAD array detectors in any FLSM system.
Quantitative fluorescence microscopy is experiencing an important revolution thanks to single-photon array detectors. These detectors provide users with so far inaccessible specimen information: The distribution of the specimen's fluorescence emission at single-photon level and high spatiotemporal sampling. In laser-scanning microscopy, this photon-resolved measurement has enabled robust fluorescence lifetime imaging at sub-diffraction spatial resolution, thus opening new perspectives for structural and functional imaging. Despite these significant advances in imaging, studying the time evolution of biological processes remains a considerable challenge. Here we present a comprehensive framework of live-cell spectroscopy methodologies -- compatible with imaging -- to investigate bio-molecular processes at various spatiotemporal scales. We use photon-resolved spatial and temporal measurements granted by a single-photon array detector to boost the information content of a unified fluorescence fluctuation spectroscopy and fluorescence lifetime experiment. To demonstrate the potential of this approach, we investigate the phase transition of liquid-like condensates during oxidative stress inside living cells. These condensates are generally found in several cellular processes and exhibit substantial variations in molecular composition, size, and kinetics, posing a significant challenge for quantifying their underlying molecular dynamics. This study demonstrates how the proposed approach reveals the mutual dynamics of different RNA-binding proteins involved in the stress granules formation -- inaccessible to imaging alone. We observe condensate formation by performing time-lapse super-resolved imaging of the cellular macro-environment while simultaneously monitoring the molecular mobility, the sub-diffraction environment organization, interactions, and nano-environment properties through fluorescence lifetime fluctuation spectroscopy. We are confident that our framework offers a versatile toolkit for investigating a broad range of bio-molecular processes -- not limited to liquid-liquid phase transition -- and we anticipate their widespread application in future life-science research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.