Purpose of Study: The purpose of the study was to evaluate the effect of patient characteristics and equipment-related factors on the computed tomography (CT) dose received by patients from positron emission tomography-CT (PET-CT) using system-generated dose-length product (DLP) values and also to check the effective dose (ED) received from various CT protocols at our institute. Materials and Methods: This retrospective study included 78 adult patients who underwent F-18 fluorodeoxyglucose whole-body PET-CT and were divided into three groups based on the area of primary cancerous lesion. In Group A, we had 44 patients who underwent PET-CT (head-and-neck protocol), in Group B, we had 24 patients who underwent PET-CT (whole body with brain protocol), and in Group C, we had 10 patients who underwent PET-CT (pelvis protocol). All of the patients under the study are of South Asian ethnicity. A majority of patients 53.85% were males and remaining 46.15% were females. The product of conversion factor (k-coefficient), as described in “American Association of Physicists in Medicine Report No. 96” and DL P value generated by the scanner, was used to calculate the ED. Moreover, we also performed regression analysis to check relation between body weight, height, scan range, tube current, Volume computed tomography dose index (CTDIvol), DLP, and ED. Results: The regression analysis shows that scan range, patient height, weight, tube current, and DLP were significantly correlated with ED ( P < 0.05 for all). Moreover, the DLP and conversion factor method estimated the ED from various groups. Patients under Group A (head-and-neck protocol), Group B (whole body with brain protocol), Group C (pelvis protocol) received an average ED of 22.45 mSv, 22.40 mSv, and 21.24 mSv, respectively. Conclusion: ED from CT component of PET-CT can be assessed as the product of scanner-generated DLP and conversion factor for selected range. Moreover, body weight, scan range, and tube current had an independent significant effect on ED received from CT.
A failure in any of the hardware components can lead to degradation in image quality and accuracy of quantification. Few artifacts may bring serious impacts on the image quality and finally lead to the wrong diagnosis. We encountered a sudden appearance of the cold area, being more prominently visible on Positron Emission Tomography image in comparison to the fused image. A daily quality assurance scan was performed to evaluate the status of the machine after giving a restart to the system. It was discovered that the module number 9–11 showed dark black color in the graph due to scarcity of counts indicating a failure/malfunctioning of the detector or electronic board-Cassette Electronic Module board (CEM board) supporting the module 9–11. Further evaluation of the system helped us diagnose that one of the electronic board (CEM Board) had become nonfunctional. A new functional electronic board (CEM board) was ordered and placed and the error rectified.
This article briefly describes the event of a defective detector block in a daily quality assurance scan/blank scan and insists on implementing guidelines to scan or not to scan in such a scenario. The nuclear medicine physicist should have a clear understanding of the blank scan graph, which shall help rectify the right cause of problem and give confidence to the physician in reporting the acquired study. A routine blank scan in positron emission tomography signifies various parameters of the crystal (coincidence count rate, single count rate, dead time, and coincidence time along with energy response) and in some respect is analogous to the daily uniformity flood image for gamma cameras, providing an overall assessment of detector response. We encountered a bad detector block in our routine quality assurance scan/blank scan and analyzed the root cause behind such an error which was finally restored to normalcy by replacing the defected part with a new one and an error-free blank scan was established. The analysis was carried out by performing various possible checks and discussing the issue with service engineer to help identify the defects much before service engineer actually arrived in our department. This allowed us to take the correct decision and enabled us to get the scanner repaired faster. Hence, a good understanding of the daily quality control test and proper analysis of the same may result in swift decision-making and faster repair of equipment leading to minimal disruption in the clinical workflow as well as avoidance of suboptimal scanning leading to the wrong diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.