Automatic in-line process quality control plays a crucial role to enhance production efficiency in the injection molding industry. Industry 4.0 is leading the productivity and efficiency of companies to minimize scrap rates and strive for zero-defect production, especially in the injection molding industry. In this study, a fully automated closed-loop injection molding (IM) setup with a communication platform via OPC UA was built in compliance with Industry 4.0. The setup included fully automated inline measurements, in-line data analysis, and an AI control system to set the new machine parameters via the OPC UA communication protocol. The surface quality of the injection molded parts was rated using the ResNet-18 convolutional neural network, which was trained on data gathered by a heuristic approach. Further, eight different machine learning models for predicting the part quality (weight, surface quality, and dimensional properties) and for predicting sensor data were trained using data from a variety of production information sources, including in-mold sensors, injection molding machine (IMM) sensors, ambient sensors, and inline product quality measurements. These models are the backbone of the AI control system, which is a heuristic model predictive control (MPC) method. This method was applied to find new sets of machine parameters during production to control the specified part quality feature. The control system and predictive models were successfully tested for two groups of quality features: Geometry control and surface quality control. Control parameters were limited to injection speed and holding pressure. Moreover, the geometry control was repeated with mold temperature as an additional control parameter.
In the manufacturing of injection-molded plastic parts, it is essential to perform a non-destructive (and, in some applications, contactless) three-dimensional measurement and surface inspection of the injection-molded part to monitor the part quality. The measurement method depends strongly on the shape and the optical properties of the part. In this study, a high-precision (±5 µm) and high-speed system (total of 24 s for a complete part dimensional measurement) was developed to measure the dimensions of a piano-black injection-molded part. This measurement should be done in real time and close to the part’s production time to evaluate the quality of the produced parts for future online, closed-loop, and predictive quality control. Therefore, a novel contactless, three-dimensional measurement system using a multicolor confocal sensor was designed and manufactured, taking into account the nominal curved shape and the glossy black surface properties of the part. This system includes one linear and one cylindrical moving axis, as well as one confocal optical sensor for radial R-direction measurements. A 6 DOF (degrees of freedom) robot handles the part between the injection molding machine and the measurement system. An IPC coordinates the communications and system movements over the OPC UA communication network protocol. For validation, several repeatability tests were performed at various speeds and directions. The results were compared using signal similarity methods, such as MSE, SSID, and RMS difference. The repeatability of the system in all directions was found to be in the range of ±5 µm for the desired speed range (less than 60 mm/s–60 degrees/s). However, the error increases up to ±10 µm due to the fixture and the suction force effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.