Understanding and forecasting of summertime afternoon precipitation due to rapidly developing cumulonimbus clouds without any significant synoptic-scale influences are important to prevent and mitigate the induced disasters. Future changes in the behavior of such precipitation events have recently gained scientific and societal interests. This study investigates the environmental stability for afternoon precipitation that develops under synoptically undisturbed conditions in summer by using the outputs of 20-km-mesh, super-high-resolution atmospheric general circulation model (GCM) simulations for a present, a near-future, and a future climate under global warming with the Intergovernmental Panel on Climate Change A1B emission scenario. The Kanto Plain was chosen as the analysis area. After verifying the usefulness of the GCM present-climate outputs with observations and gridded mesoscale analyses, we examine the future changes in the environmental stability for the afternoon precipitation by conducting statistical analyses. In the future climates, temperature lapse rate decreased in the lower troposphere, while water vapor mixing ratio increased throughout the deep troposphere. The changes in the temperature and moisture profiles resulted in the increase in both precipitable water vapor and convective available potential energy. These projected changes will be enhanced with the future period. Furthermore, the statistical analyses for the di¤erences of the stability parameters between no-rain and rain days under the synoptically undisturbed condition in each simulated climate period indicated that the representations of the stability parameters that distinguish no-rain and rain events are basically unchanged between the present and the future climates. This result suggests that the environmental characteristics favorable for afternoon precipitation in the synoptically undisturbed environments will not change under global warming.
Designers of commercial aviation flight decks have recently begun to consider ways to reduce or eliminate the use of paper documents in flight operations. Using ethnographic methods we describe the cognitive functions served by the paper-use practices of pilots. The special characteristics of flight deck work give a distinctive quality to pilots' paper-use practices. The complex high-stakes high-tempo nature of pilots' work makes shared understandings essential to safe flight. This means that representation of flight critical information must not only be available to both pilots, but available to the pilots jointly in interaction with one another. The cross-cultural component of our work shows how language and culture color all of the pilots' practices and how interaction with paper objects allows actors to build social identities and social relations.
The environmental stability for afternoon rain events over the Kanto Plain in summer was investigated. The AMeDAS data were used to extract the hot, sunny days under synoptically undisturbed conditions, and the gridded mesoscale analysis data that cover the southern Kanto Plain were used to examine the difference of the characteristics of environmental stability among no-rain, rain, and strong-rain events in the afternoon by calculating commonly used stability indices and parameters. A statistical analysis by t-test statistic was conducted to determine the significance of the different features of the stability parameters among the events. Among the parameters, K-index indicated the highest significance level. The analyses on the difference of temperature and humidity at each height among the events indicated that the temperatures and moistures at low to middle levels clearly distinguish the stability conditions for the afternoon rain events. It is strongly suggested that colder temperature at middle levels and higher humidity at low to middle levels are favorable conditions for the development of stronger rains in the afternoon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.