The automatic traffic sign detection and recognition (TSDR) system is very important research in the development of advanced driver assistance systems (ADAS). Investigations on vision-based TSDR have received substantial interest in the research community, which is mainly motivated by three factors, which are detection, tracking and classification. During the last decade, a substantial number of techniques have been reported for TSDR. This paper provides a comprehensive survey on traffic sign detection, tracking and classification. The details of algorithms, methods and their specifications on detection, tracking and classification are investigated and summarized in the tables along with the corresponding key references. A comparative study on each section has been provided to evaluate the TSDR data, performance metrics and their availability. Current issues and challenges of the existing technologies are illustrated with brief suggestions and a discussion on the progress of driver assistance system research in the future. This review will hopefully lead to increasing efforts towards the development of future vision-based TSDR system.
The main objective of this study is to develop an efficient TSDR system which contains an enriched dataset of Malaysian traffic signs. The developed technique is invariant in variable lighting, rotation, translation, and viewing angle and has a low computational time with low false positive rate. The development of the system has three working stages: image preprocessing, detection, and recognition. The system demonstration using a RGB colour segmentation and shape matching followed by support vector machine (SVM) classifier led to promising results with respect to the accuracy of 95.71%, false positive rate (0.9%), and processing time (0.43 s). The area under the receiver operating characteristic (ROC) curves was introduced to statistically evaluate the recognition performance. The accuracy of the developed system is relatively high and the computational time is relatively low which will be helpful for classifying traffic signs especially on high ways around Malaysia. The low false positive rate will increase the system stability and reliability on real-time application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.