Bone tumors, such as osteosarcomas, can occur anywhere in the bones, though they usually occur in the extremities of long bones near metaphyseal growth plates. Osteosarcoma is a malignant lesion caused by a malignant osteoid growing from primitive mesenchymal cells. In most cases, osteosarcoma develops as a solitary lesion within the most rapidly growing areas of the long bones in children. The distal femur, proximal tibia, and proximal humerus are the most frequently affected bones, but virtually any bone can be affected. Early detection can reduce mortality rates. Osteosarcoma’s manual detection requires expertise, and it can be tedious. With the assistance of modern technology, medical images can now be analyzed and classified automatically, which enables faster and more efficient data processing. A deep learning-based automatic detection system based on whole slide images (WSIs) is presented in this paper to detect osteosarcoma automatically. Experiments conducted on a large dataset of WSIs yielded up to 99.3% accuracy. This model ensures the privacy and integrity of patient information with the implementation of blockchain technology. Utilizing edge computing and fog computing technologies, the model reduces the load on centralized servers and improves efficiency.
The study presents a framework to analyze and detect meddling in real-time network data and identify numerous meddling patterns that may be harmful to various communication means, academic institutes, and other industries. The major challenge was to develop a non-faulty framework to detect meddling (to overcome the traditional ways). With the development of machine learning technology, detecting and stopping the meddling process in the early stages is much easier. In this study, the proposed framework uses numerous data collection and processing techniques and machine learning techniques to train the meddling data and detect anomalies. The proposed framework uses support vector machine (SVM) and K-nearest neighbor (KNN) machine learning algorithms to detect the meddling in a network entangled with blockchain technology to ensure the privacy and protection of models as well as communication data. SVM achieves the highest training detection accuracy (DA) and misclassification rate (MCR) of 99.59% and 0.41%, respectively, and SVM achieves the highest-testing DA and MCR of 99.05% and 0.95%, respectively. The presented framework portrays the best meddling detection results, which are very helpful for various communication and transaction processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.