As the COVID-19 pandemic moved beyond the initial heavily impacted and urbanized Northeast region of the United States, hotspots of cases in other urban areas ensued across the country in early 2020. In South Carolina, the spatial and temporal patterns were different, initially concentrating in small towns within metro counties, then diffusing to centralized urban areas and rural areas. When mitigation restrictions were relaxed, hotspots reappeared in the major cities. This paper examines the county-scale spatial and temporal patterns of confirmed cases of COVID-19 for South Carolina from March 1st—September 5th, 2020. We first describe the initial diffusion of the new confirmed cases per week across the state, which remained under 2,000 cases until Memorial Day weekend (epi week 23) then dramatically increased, peaking in mid-July (epi week 29), and slowly declining thereafter. Second, we found significant differences in cases and deaths between urban and rural counties, partially related to the timing of the number of confirmed cases and deaths and the implementation of state and local mitigations. Third, we found that the case rates and mortality rates positively correlated with pre-existing social vulnerability. There was also a negative correlation between mortality rates and county resilience patterns, as expected, suggesting that counties with higher levels of inherent resilience had fewer deaths per 100,000 population.
This paper examines the spatial and temporal trends in county-level COVID-19 cases and fatalities in the United States during the first year of the pandemic (January 2020–January 2021). Statistical and geospatial analyses highlight greater impacts in the Great Plains, Southwestern and Southern regions based on cases and fatalities per 100,000 population. Significant case and fatality spatial clusters were most prevalent between November 2020 and January 2021. Distinct urban–rural differences in COVID-19 experiences uncovered higher rural cases and fatalities per 100,000 population and fewer government mitigation actions enacted in rural counties. High levels of social vulnerability and the absence of mitigation policies were significantly associated with higher fatalities, while existing community resilience had more influential spatial explanatory power. Using differences in percentage unemployment changes between 2019 and 2020 as a proxy for pre-emergent recovery revealed urban counties were hit harder in the early months of the pandemic, corresponding with imposed government mitigation policies. This longitudinal, place-based study confirms some early urban–rural patterns initially observed in the pandemic, as well as the disparate COVID-19 experiences among socially vulnerable populations. The results are critical in identifying geographic disparities in COVID-19 exposures and outcomes and providing the evidentiary basis for targeting pandemic recovery.
In the very early hours of 26th December 2003, a devastating and strong earthquake with a magnitude of 6.5 struck Bam, one of the historical cities of Kerman province in the south of Iran. According to the official reports, more than 30,000 were killed and about 25,000 injured. More than 80% of the town's buildings were also destroyed. After the disaster, Bam's reconstruction management process was presented with a lot of challenges and faced many fundamental questions. The number of human losses and related social issues, extensive destruction of the historical town, and also the lack of good experience in the reconstruction of a city or town made the reconstruction project of Bam more complicated. The reconstruction of Bam was the most important postdisaster reconstruction project among recent reconstructions in Iran. Many factors, such as concern over the government and international agencies, the new managerial approaches, and the application of appropriate reconstruction methods, made it different from the other reconstruction programs. Thus, the post-earthquake reconstruction of Bam is investigated in this research with respect to the importance of this issue. The aim behind this article is to give a brief explanation of the earthquake reconstruction management policies in Bam and also the plans for the reconstruction and rebuilding of urban residential and commercial units.
This article summarizes the Next Generation Attenuation (NGA) Subduction (NGA-Sub) project, a major research program to develop a database and ground motion models (GMMs) for subduction regions. A comprehensive database of subduction earthquakes recorded worldwide was developed. The database includes a total of 214,020 individual records from 1,880 subduction events, which is by far the largest database of all the NGA programs. As part of the NGA-Sub program, four GMMs were developed. Three of them are global subduction GMMs with adjustment factors for up to seven worldwide regions: Alaska, Cascadia, Central America and Mexico, Japan, New Zealand, South America, and Taiwan. The fourth GMM is a new Japan-specific model. The GMMs provide median predictions, and the associated aleatory variability, of RotD50 horizontal components of peak ground acceleration, peak ground velocity, and 5%-damped pseudo-spectral acceleration (PSA) at oscillator periods ranging from 0.01 to 10 s. Three GMMs also quantified “within-model” epistemic uncertainty of the median prediction, which is important in regions with sparse ground motion data, such as Cascadia. In addition, a damping scaling model was developed to scale the predicted 5%-damped PSA of horizontal components to other damping ratios ranging from 0.5% to 30%. The NGA-Sub flatfile, which was used for the development of the NGA-Sub GMMs, and the NGA-Sub GMMs coded on various software platforms, have been posted for public use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.