Exosomes are extracellular vehicles (EVs) that encapsulate genomic and proteomic material from the cell of origin that can be used as biomarkers for non-invasive disease diagnostics in point of care settings. The efficient and accurate detection, quantification, and molecular profiling of exosomes are crucial for the accurate identification of disease biomarkers. Conventional isolation methods, while well-established, provide the co-purification of proteins and other types of EVs. Exosome purification, characterization, and OMICS analysis are performed separately, which increases the complexity, duration, and cost of the process. Due to these constraints, the point-of-care and personalized analysis of exosomes are limited in clinical settings. Lab-on-a-chip biosensing has enabled the integration of isolation and characterization processes in a single platform. The presented review discusses recent advancements in biosensing technology for the separation and detection of exosomes. Fluorescent, colorimetric, electrochemical, magnetic, and surface plasmon resonance technologies have been developed for the quantification of exosomes in biological fluids. Size-exclusion filtration, immunoaffinity, electroactive, and acoustic-fluid-based technologies were successfully applied for the on-chip isolation of exosomes. The advancement of biosensing technology for the detection of exosomes provides better sensitivity and a reduced signal-to-noise ratio. The key challenge for the integration of clinical settings remains the lack of capabilities for on-chip genomic and proteomic analysis.
There is an urgent unmet medical need to develop therapeutic options for the ~50% of depression patients suffering from treatment‐resistant depression, which is difficult to treat with existing psycho‐ and pharmaco‐therapeutic options. Classical psychedelics, such as the 5HT2A agonists, have re‐emerged as a treatment paradigm for depression. Recent clinical trials highlight the potential effectiveness of 5HT2A agonists to improve mood and psychotherapeutic growth in treatment‐resistant depression patients, even in those who have failed a median of four previous medications in their lifetime. Moreover, microdosing could be a promising way to achieve long‐term alleviation of depression symptoms without a hallucinogenic experience. However, there are a gamut of practical barriers that stymie further investigation of microdosing 5HT2A agonists, including: low compliance with the complicated dosing regimen, high risk of diversion of controlled substances, and difficulty and cost administering the long‐term treatment regimens in controlled settings. Here, we developed a drug delivery system composed of multilayered cellulose acetate phthalate (CAP)/Pluronic F‐127 (P) films for the encapsulation and interval delivery of 5HT2A agonists from a fully biodegradable and biocompatible implant. CAPP film composition, thickness, and layering strategies were optimized, and we demonstrated three distinct pulses from the multilayered CAPP films in vitro. Additionally, the pharmacokinetics and biodistribution of the 5HT2A agonist 2,5‐Dimethoxy‐4‐iodoamphetamine (DOI) were quantified following the subcutaneous implantation of DOI‐loaded single and multilayered CAPP films. Our results demonstrate, for the first time, the interval delivery of psychedelics from an implantable drug delivery system and open the door to future studies into the therapeutic potential of psychedelic delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.