The Carroll algebra is constructed as the c → 0 limit of the Poincare algebra and is associated to symmetries on generic null surfaces. In this paper, we begin investigations of Carrollian fermions or fermions defined on generic null surfaces. Due to the availability of two different (degenerate) metrics on Carroll spacetimes, there is the possibility of two different versions of Carroll Clifford algebras. We consider both possibilities and construct explicit representations of Carrollian gamma matrices and show how to build higher spacetime dimensional representations out of lower ones. Actions for Carroll fermions are constructed with these gamma matrices and the properties of these actions are investigated.We show that in condensed matter systems where the dispersion relation becomes trivial i.e. the energy is not dependent on momentum and bands flatten out, Carroll symmetry generically appears. We give explicit examples of this including that of twisted bi-layer graphene, where superconductivity appears at so called magic angles and connect this to Carroll fermions.
We study the disconnected entanglement entropy (DEE) of a Kitaev chain in which the chemical potential is periodically modulated with δ-function pulses within the framework of Floquet theory. For this driving protocol, the DEE of a sufficiently large system with open boundary conditions turns out to be integer-quantized, with the integer being equal to the number of Majorana edge modes localized at each edge of the chain generated by the periodic driving, thereby establishing the DEE as a marker for detecting Floquet Majorana edge modes. Analysing the DEE, we further show that these Majorana edge modes are robust against weak spatial disorder and temporal noise. Interestingly, we find that the DEE may, in some cases, also detect the anomalous edge modes which can be generated by periodic driving of the nearest-neighbor hopping, even though such modes have no topological significance and not robust against spatial disorder. We also probe the behaviour of the DEE for a kicked Ising chain in the presence of an integrability breaking interaction which has been experimentally realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.