Abstract:In this paper, a low-power DC voltage limiter is designed for radio frequency identification tags. In this design, the low-power bandgap reference (BGR) circuit, which is insensitive to temperature, and also the comparator
In this paper, a low-noise amplifier (LNA) with process, voltage, and temperature (PVT) compensation for low power dissipation applications is designed. When supply voltage and LNA bias are close to the subthreshold, voltage has significant impact on power reduction. At this voltage level, the gain is reduced and various circuit parameters become highly sensitive to PVT variations. In the proposed LNA circuit, in order to enhance efficiency at low supply voltage, the cascade technique with g m boosting is used. To improve circuit performance when in the subthreshold area, the forward body bias technique is used. Also, a new PVT compensator is suggested to reduce sensitivity of different circuit's parameters to PVT changes. The suggested PVT compensator employs a current reference circuit with constant output regarding temperature and voltage variations. This circuit produces a constant current by subtracting two proportional to absolute temperature currents. At a supply voltage of 0.35 V, the total power consumption is 585 μW. In different process corners, in the proposed LNA with PVT compensator, gain and noise figure (NF) variations are reduced 10.3 and 4.6 times, respectively, compared to a conventional LNA with constant bias. With a 20% deviation in the supply voltage, the gain and noise NF variations decrease 6.5 and 34 times, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.