This paper presents a comprehensive step-wise methodology for implementing industry 4.0 in a functional coal power plant. The overall efficiency of a 660 MWe supercritical coal-fired plant using real operational data is considered in the study. Conventional and advanced AI-based techniques are used to present comprehensive data visualization. Monte-Carlo experimentation on artificial neural network (ANN) and least square support vector machine (LSSVM) process models and interval adjoint significance analysis (IASA) are performed to eliminate insignificant control variables. Effective and validated ANN and LSSVM process models are developed and comprehensively compared. The ANN process model proved to be significantly more effective; especially, in terms of the capacity to be deployed as a robust and reliable AI model for industrial data analysis and decision making. A detailed investigation of efficient power generation is presented under 50%, 75%, and 100% power plant unit load. Up to 7.20%, 6.85%, and 8.60% savings in heat input values are identified at 50%, 75%, and 100% unit load, respectively, without compromising the power plant’s overall thermal efficiency.
Modern data analytics techniques and computationally inexpensive software tools are fueling the commercial applications of data-driven decision making and process optimization strategies for complex industrial operations. In this paper, modern and reliable process modeling techniques, i.e., multiple linear regression (MLR), artificial neural network (ANN), and least square support vector machine (LSSVM), are employed and comprehensively compared as reliable and robust process models for the generator power of a 660 MWe supercritical coal combustion power plant. Based on the external validation test conducted by the unseen operation data, LSSVM has outperformed the MLR and ANN models to predict the power plant’s generator power. Later, the LSSVM model is used for the failure mode recovery and a very successful operation control excellence tool. Moreover, by adjusting the thermo-electric operating parameters, the generator power on an average is increased by 1.74%, 1.80%, and 1.0 at 50% generation capacity, 75% generation capacity, and 100% generation capacity of the power plant, respectively. The process modeling based on process data and data-driven process optimization strategy building for improved process control is an actual realization of industry 4.0 in the industrial applications.
The emissions from coal power plants have serious implication on the environment protection, and there is an increasing effort around the globe to control these emissions by the flue gas cleaning technologies. This research was carried out on the limestone forced oxidation (LSFO) flue gas desulfurization (FGD) system installed at the 2*660 MW supercritical coal-fired power plant. Nine input variables of the FGD system: pH, inlet sulfur dioxide (SO2), inlet temperature, inlet nitrogen oxide (NOx), inlet O2, oxidation air, absorber slurry density, inlet humidity, and inlet dust were used for the development of effective neural network process models for a comprehensive emission analysis constituting outlet SO2, outlet Hg, outlet NOx, and outlet dust emissions from the LSFO FGD system. Monte Carlo experiments were conducted on the artificial neural network process models to investigate the relationships between the input control variables and output variables. Accordingly, optimum operating ranges of all input control variables were recommended. Operating the LSFO FGD system under optimum conditions, nearly 35% and 24% reduction in SO2 emissions are possible at inlet SO2 values of 1500 mg/m3 and 1800 mg/m3, respectively, as compared to general operating conditions. Similarly, nearly 42% and 28% reduction in Hg emissions are possible at inlet SO2 values of 1500 mg/m3 and 1800 mg/m3, respectively, as compared to general operating conditions. The findings are useful for minimizing the emissions from coal power plants and the development of optimum operating strategies for the LSFO FGD system.
In the current work, the effects of design (groove depth and groove width) and operational (temperature and velocity) parameters on aerodynamic performance parameters (coefficient of drag and coefficient of lift) of an isolated passenger car tire have been investigated. The study is conducted by using neural network-based Monte-Carlo analysis on computational fluid dynamics (CFD). The computer experiments are designed to obtain the causal relationship between tire design, operational, and aerodynamic performance parameters. The Reynolds-averaged Navier–Stokes equations-based Realizable K-ε model has been employed to analyze the variations in flow patterns around an isolated tire. The design parameters are varied over wide range and full factorial design, while considering temperature and velocity is completely explored to draw conclusive results. The multi-layer perceptron type neural network with the back-propagation algorithm is trained to map any non-linearity in causal relationships. The sensitivity analysis is performed to find the relationship between control variables and performance indicators. The importance of control variable is determined by both sensitivity and significance analyses and the paired interaction analysis is performed between selected control variables to find the interactive behavior of corresponding variables. The design parameter of groove width with 6.8% and 41% reduction in drag and lift coefficient, respectively, and conventionally overlooked operational parameter of velocity with 4% and 35% impact on drag and lift coefficient, respectively, are found to be the most significant variables. The air trapped between the longitudinal grooves and the road is found to follow the beam theory. The interaction of the groove depth and width is found to be significant with respect to coefficient of lift based on the air beam concept. The interaction of groove width and velocity is found to be significant with respect to both coefficients of lifts and drag.
The computational aero-acoustic study of an isolated passenger car tire is carried out to understand the effect of dimensions of longitudinal tire grooves and operational parameters (velocity and temperature) on tire noise. The computational fluid dynamics and acoustic models are used to obtain aero-acoustic tire noise at near-field and far-field receivers around the tire and artificial neural networks-based regression are used to study the highly non-linear and interactive causal relationships in the system. Unsteady Reynolds-Averaged Navier-Stokes based realizable k-epsilon model is used to solve the flow field in the computational domain. The Ffowcs Williams and Hawkings model is used to obtain aero-acoustic tire noise at far-field positions. Spectral analysis is used to convert the output time domain to frequency domain and to obtain A-weighted sound pressure level. Artificial neural network–based response surface regression is conducted to understand casual relationships between A-weighted sound pressure level and control variables (Groove depth, Groove width, Temperature and velocity). Maximum A-weighted sound pressure level is observed in the wake region of the tire model. The interaction study indicates that ∼10% reduction in the aero-acoustic emissions is possible by selecting appropriate combinations of groove width and groove depth. The interaction of velocity with width is found to be most significant with respect to A-weighted sound pressure level at all receivers surrounding the tire. The interaction of operational parameters, that is, velocity and temperature are found to be significant with respect to A-weighted sound pressure level at wake and front receivers. Therefore, the regional speed limits and seasonal temperatures need to be considered while designing the tire to achieve minimum aero-acoustic emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.