Explicit antigen–antibody binding has accelerated the development of immunosensors for the detection of various analytes in biomedical and environmental domains. Being a subclass of biosensors, immunosensors have been a significant area of research in attaining high sensitivity and an ultralow sensing limit to detect biological analytes present in trace levels. The highly porous structure, large surface area, and excellent biocompatibility of hydrogels enabling the retainability of the activity and innate framework of the attached biomolecules make them a suitable candidate for immunosensor fabrication. Hydrogels based on polycarboxylate, cellulose, polyaniline, polypyrrole, sodium alginate, chitosan, and agarose are exploited in conjunction with other nanomaterials such as AuNPs, GO, and MWCNTs to augment the electron transfer during the immunosensing mechanism. Surface plasmon resonance, electrochemiluminescence, colorimetric, and electrochemical assays are different strategies utilized for the signal transduction in hydrogel-based immunosensors during the formation of the antigen–antibody complex. These hydrogel-based immunosensors exhibit rapid response, excellent stability, reproducibility, high selectivity and high sensitivity, a broad range of detection, an ultralow limit of detection, and display results similar to those for the ELISA test. This review propounds different hydrogel-functionalized immunosensing platforms classified on the basis of their signal transduction for the detection of disparate cancer biomarkers (tumor necrosis factor, α-fetoprotein, prostate-specific antigen, carbohydrate antigen 24-2, carcinoembryonic antigen, neuron-specific enolase, and cytokeratin antigen 21-1), hormones (cortisol, cortisone, and human chorionic gonadotropin), human IgG, and ractopamine in animal feeds.
Tissue engineering is an interdisciplinary field that aims toward the repair of the tissues and organs by bringing together the chemists, material scientists, and biologists to work in coordination for a better understanding of cell−polymer interactions. The leading challenge in the field of tissue engineering is to mimic the naturally occurring extracellular matrix due to which scaffold engineering has become the central area of research in this field. Various materials have been investigated for the fabrication of scaffolds; silk-based composites are among the most promising materials because of their secure processing, adequate mechanical strength, biodegradability, biocompatibility, hemocompatibility, and oxygen and water permeability. This review extensively focuses on the silk-based composite scaffolds, their fabrication, sterilization, and applications in tissue engineering.
Cancer is a broad-spectrum disease which is spread globally, having high mortality rates. This results from genetic, epigenetic and molecular abnormalities caused by various mutations. The main reason behind this critical problem lies in its diagnostics, the late detection of the disease is the root cause of all this. This can be managed well by the timely diagnosis of cancer by means of the tumor biomarkers present in the body fluids such as serum, blood, and urine. These tumor biomarkers are present in normal conditions as well, but their concentrations are altered in the presence of a malignant tumor. Prolonged studies have reported that immunosensors can be used to detect the minimal amount of biomarkers present in the sample and also provides point-of-care detection. The recent investigations demonstrated the use of polymers along with immunosensors for enhancing their selectivity and sensitivity towards the biomarkers and making them even more efficient. This review focuses on the variety of tumor biomarkers, different types of immunosensors and polymeric immunosensors using different polymers like polypyrrole, polyaniline, PHEMA, etc.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.