The impact of the COVID-19 global pandemic has required governments across the world to develop effective public health policies using epidemiological models. Unfortunately, as a result of limited testing ability, these models often rely on lagged rather than real-time data, and cannot be adapted to small geographies to provide localized forecasts. This study proposes ADBio, a multi-level adaptive and dynamic biosensorbased model that can be used to predict the risk of infection with COVID-19 from the individual level to the county level, providing more timely and accurate estimates of virus exposure at all levels. The model is evaluated using diagnosis simulation based on current COVID-19 cases as well as GPS movement data for Massachusetts and New York, where COVID-19 hotspots had previously been observed. Results demonstrate that lagged testing data is indeed a major detriment to current modeling efforts, and that unlike the standard SEIR model, ADBio is able to adapt to arbitrarily small geographic regions and provide reasonable forecasts of COVID-19 cases. The features of this model enable greater national pandemic preparedness and provide local town and county governments a valuable tool for decision-making during a pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.