Perilipin 2 (PLIN2) is a protein involved in lipid storage and metabolism in non-adipose tissues. Detectable levels of circulating PLIN2 (cPLIN2) have been reported to be associated with some types of cancer, but no systematic analysis of age-related modifications in cPLIN2 levels has ever been performed. We measured serum cPLIN2 in a group of old people including centenarians in comparison with young subjects and tested possible correlations with parameters of body composition, fat and glucose metabolism, and inflammation. We found that: i. levels of cPLIN2 do not change with age, but women have higher levels of cPLIN2 with respect to men; ii. cPLIN2 levels strongly correlate to BMI, as well as fat and lean mass; iii. cPLIN2 levels strongly correlate with the proinflammatory adipokine leptin. Due to the adipogenic activity of leptin, it is hypothesized that cPLIN2 is affected and possibly regulated by this pleiotropic adipokine. Moreover, these results suggest that cPLIN2 (possibly together with leptin) could be assumed as a proxy for body adiposity.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Background
Myelofibrosis (MF) is a clonal disorder of hemopoietic stem/progenitor cells (HSPCs) with high prevalence in elderly patients and mutations in three driver genes (JAK2, MPL, or CALR). Around 10–15% of patients are triple-negative (TN) for the three driver mutations and display significantly worse survival. Circulating extracellular vesicles (EVs) play a role in intercellular signaling and are increased in inflammation and cancer. To identify a biomolecular signature of TN patients, we comparatively evaluated the circulating HSPCs and their functional interplay with the microenvironment focusing on EV analysis.
Methods
Peripheral blood was collected from MF patients (n = 29; JAK2V617F mutation, n = 23; TN, n = 6) and healthy donors (HD, n = 10). Immunomagnetically isolated CD34+ cells were characterized by gene expression profiling analysis (GEP), survival, migration, and clonogenic ability. EVs were purified from platelet-poor plasma by ultracentrifugation, quantified using the Nanosight technology and phenotypically characterized by flow cytometry together with microRNA expression. Migration and survival of CD34+ cells from patients were also analyzed after in vitro treatments with selected inflammatory factors, i.e. (Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α, IL6) or after co-culture with EVs from MF patients/HD.
Results
The absolute numbers of circulating CD34+ cells were massively increased in TN patients. We found that TN CD34+ cells show in vitro defective functions and are unresponsive to the inflammatory microenvironment. Of note, the plasma levels of crucial inflammatory cytokines are mostly within the normal range in TN patients. Compared to JAK2V617F-mutated patients, the GEP of TN CD34+ cells revealed distinct signatures in key pathways such as survival, cell adhesion, and inflammation. Importantly, we observed the presence of mitochondrial components within plasma EVs and a distinct phenotype in TN-derived EVs compared to the JAK2V617F-mutated MF patients and HD counterparts. Notably, TN EVs promoted the survival of TN CD34+ cells. Along with a specific microRNA signature, the circulating EVs from TN patients are enriched with miR-361-5p.
Conclusions
Distinct EV-driven signals from the microenvironment are capable to promote the TN malignant hemopoiesis and their further investigation paves the way toward novel therapeutic approaches for rare MF.
We report the case of a 77-year-old woman affected by coronavirus disease-19 (COVID-19) who developed an occlusive arterial disease of the lower limb requiring a left leg amputation. We studied the mechanisms of vascular damage by SARS-CoV-2 by means of a comprehensive multi-technique in situ analysis on the diseased popliteal arterial district, including immunohistochemistry (IHC), transmission electron microscopy (TEM) and miRNA analysis. At histological analyses, we observed a lymphocytic inflammatory infiltrate, oedema and endothelialitis of adventitial vasa vasorum while the media was normal and the intima had only minor changes. The vasa vasorum expressed the ACE2 receptor and factor VIII; compared with the controls, VEGFR2 staining was reduced. TEM analyses showed endothelial injury and numerous Weibel–Palade bodies in the cytoplasm. No coronavirus particle was seen. IL-6 protein and mRNA, together with miR-155-5p and miRs-27a-5p, which can target IL-6, were significantly increased compared with that in the controls. Our case report suggests an involvement of adventitial artery microcirculation by inflammation in the course of COVID-19. Without evident signs of current infection by SARS-CoV-2, endothelial cells show a spectrum of structural and functional alterations that can fuel the cardiovascular complications observed in people infected with SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.