Si-C based alloys have attracted much attention due to their potential applications in electronic and optical devices. In this paper, a-SixCy thin films with different Silicon (Si) content are obtained by sputtering of SiC; co-sputtering of SiC and Si targets at different deposition temperatures (Td) such as 200oC, 350oC and 500oC. It is annealed at various annealing temperature (Ta) using conventional thermal annealing (CTA) and Rapid Thermal Annealing (RTA) techniques. The effect of excess Si incorporation and the unintentional oxidation during various stages of sample preparation are discussed. Their structural and optical properties are investigated using spectroscopic ellipsometry, X-Ray Diffraction spectroscopy (XRD), and Fourier Transform Infrared spectroscopy (FTIR). The refractive index value (n1.95eV) varies between 1.6 to 3.6, suggesting the transition from porous silicon carbide to Si-rich silicon carbide or silicon oxycarbide upon increasing Td and Ta, which is also supported by the FTIR spectra. The emergence of absorption peak between ~950 cm−1 and 1100 cm−1 with the increase of Ta and excess silicon is attributed to Si-O a stretching vibration bond which is an indication of Si richness and unintentional oxidation during annealing. Detailed analysis on the process parameters and the evolution of phase transformations are discussed.
Si-rich Silicon carbide thin films have grown popularity in the past decade for various opto-electronic applications. Post processing of these thin films at temperature higher than 1000oC usually lead to phase transformations to form Si nanoclusters embedded in amorphous SiC deposited by sputtering on thin films. However, the processing technique is crucial to avoid contaminants, and obtain good quality films. Therefore, a novel in-situ annealing approach within the deposition chamber is carried out at temperatures lower than usual. The influence of in-situ annealing on the material property is meticulously studied by means of Spectroscopic Ellipsometry (SE), Diffused Reflectance Spectroscopy (DRS), and Fourier Transform Infrared Spectroscopy (FTIR). In SE, the spectra are fitted using various models; the refractive index values confirm the Si-richness of the film. The band gap (2.5 to 1.5 eV) is extracted from UV spectra using Tauc plot, which confirms the coexistence of the multiphase structure with the possibility of having Si-NC with different dimensions. The results obtained are promising for optoelectronic device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.