Species distribution models predict a wholesale redistribution of trees in the next century, yet migratory responses necessary to spatially track climates far exceed maximum post-glacial rates. The extent to which populations will adapt will depend upon phenotypic variation, strength of selection, fecundity, interspecific competition, and biotic interactions. Populations of temperate and boreal trees show moderate to strong clines in phenology and growth along temperature gradients, indicating substantial local adaptation. Traits involved in local adaptation appear to be the product of small effects of many genes, and the resulting genotypic redundancy combined with high fecundity may facilitate rapid local adaptation despite high gene flow. Gene flow with preadapted alleles from warmer climates may promote adaptation and migration at the leading edge, while populations at the rear will likely face extirpation. Widespread species with large populations and high fecundity are likely to persist and adapt, but will likely suffer adaptational lag for a few generations. As all tree species will be suffering lags, interspecific competition may weaken, facilitating persistence under suboptimal conditions. Species with small populations, fragmented ranges, low fecundity, or suffering declines due to introduced insects or diseases should be candidates for facilitated migration.
Evolutionary responses are required for tree populations to be able to track climate change. Results of 250 years of common garden experiments show that most forest trees have evolved local adaptation, as evidenced by the adaptive differentiation of populations in quantitative traits, reflecting environmental conditions of population origins. On the basis of the patterns of quantitative variation for 19 adaptation-related traits studied in 59 tree species (mostly temperate and boreal species from the Northern hemisphere), we found that genetic differentiation between populations and clinal variation along environmental gradients were very common (respectively, 90% and 78% of cases). Thus, responding to climate change will likely require that the quantitative traits of populations again match their environments. We examine what kind of information is needed for evaluating the potential to respond, and what information is already available. We review the genetic models related to selection responses, and what is known currently about the genetic basis of the traits. We address special problems to be found at the range margins, and highlight the need for more modeling to understand specific issues at southern and northern margins. We need new common garden experiments for less known species. For extensively studied species, new experiments are needed outside the current ranges. Improving genomic information will allow better prediction of responses. Competitive and other interactions within species and interactions between species deserve more consideration. Despite the long generation times, the strong background in quantitative genetics and growing genomic resources make forest trees useful species for climate change research. The greatest adaptive response is expected when populations are large, have high genetic variability, selection is strong, and there is ecological opportunity for establishment of better adapted genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.