This is a self-archived -parallel published version of this article in the publication archive of the University of Vaasa. It might differ from the original.
Efficient usage of heterogeneous computing architectures requires distribution of the workload on available processing elements. Traditionally, the mapping is based on information acquired from application profiling and utilized in architecture exploration. To reduce the amount of manual work required, statistical application modeling and architecture modeling can be combined with exploration heuristics. While the application modeling side of the problem has been studied extensively, architecture modeling has received less attention. Linear System Level Architecture (LSLA) is a Model of Architecture that aims at separating the architectural concerns from algorithmic ones when predicting performance. This work builds on the LSLA model and introduces non-linear semantics, specifically to support GPU performance and power modeling, by modeling also the degree of parallelism. The model is evaluated with three signal processing applications with various workload distributions on a desktop GPU and mobile GPU. The measured average fidelity of the new model is 93% for performance, and 84% for power, which can fit design space exploration purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.