The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood–brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.
ANGPTL8 (Angiopoietin-like protein 8) is a newly identified hormone emerging as a novel drug target for treatment of diabetes mellitus and dyslipidemia due to its unique metabolic nature. With increasing number of studies targeting the regulation of ANGPTL8, integration of their findings becomes indispensable. This study has been conducted with the aim to collect, analyze, integrate and visualize the available knowledge in the literature about ANGPTL8 and its regulation. We utilized this knowledge to construct a regulatory pathway of ANGPTL8 which is available at WikiPathways, an open source pathways database. It allows us to visualize ANGPTL8's regulation with respect to other genes/proteins in different pathways helping us to understand the complex interplay of novel hormones/genes/proteins in metabolic disorders. To the best of our knowledge, this is the first attempt to present an integrated pathway view of ANGPTL8's regulation and its associated pathways and is important resource for future omics-based studies.
Sepsis is one of the major causes of human morbidity and results in a considerable number of deaths each year. Lipopolysaccharide-induced sepsis has been associated with TLR4 signalling pathway which in collaboration with the JAK/STAT signalling regulate endotoxemia and inflammation. However, during sepsis our immune system cannot maintain a balance of cytokine levels and results in multiple organ damage and eventual death. Different opinions have been made in previous studies about the expression patterns and the role of proinflammatory cytokines in sepsis that attracted our attention towards qualitative properties of TLR4 and JAK/STAT signalling pathways using computer-aided studies. René Thomas’ formalism was used to model septic and non-septic dynamics of TLR4 and JAK/STAT signalling. Comparisons among dynamics were made by intervening or removing the specific interactions among entities. Among our predictions, recurrent induction of proinflammatory cytokines with subsequent downregulation was found as the basic characteristic of septic model. This characteristic was found in agreement with previous experimental studies, which implicate that inflammation is followed by immunomodulation in septic patients. Moreover, intervention in downregulation of proinflammatory cytokines by SOCS-1 was found desirable to boost the immune responses. On the other hand, interventions either in TLR4 or transcriptional elements such as NFκB and STAT were found effective in the downregulation of immune responses. Whereas, IFN-β and SOCS-1 mediated downregulation at different levels of signalling were found to be associated with variations in the levels of proinflammatory cytokines. However, these predictions need to be further validated using wet laboratory experimental studies to further explore the roles of inhibitors such as SOCS-1 and IFN-β, which may alter the levels of proinflammatory cytokines at different stages of sepsis.
The rate of WL (LCD vs VLCD), with similar total WL, strongly regulates AT gene expression. Increased mitochondrial function, angiogenesis and adipogenesis on a VLCD compared with a LCD reflect potential beneficial diet-induced changes in AT, whereas differential neuronal and olfactory regulation suggest functions of these genes beyond the current paradigm.
BackgroundMetabolic flexibility is the ability of cells to change substrates for energy production based on the nutrient availability and energy requirement. It has been shown that metabolic flexibility is impaired in obesity and chronic diseases such as type 2 diabetes mellitus, cardiovascular diseases, and metabolic syndrome, although, whether it is a cause or an effect of these conditions remains to be elucidated.Main bodyIn this paper, we have reviewed the literature on metabolic flexibility and curated pathways and processes resulting in a network resource to investigate the interplay between these processes in the subcutaneous adipose tissue. The adipose tissue has been shown to be responsible, not only for energy storage but also for maintaining energy homeostasis through oxidation of glucose and fatty acids. We highlight the role of pyruvate dehydrogenase complex–pyruvate dehydrogenase kinase (PDC-PDK) interaction as a regulatory switch which is primarily responsible for changing substrates in energy metabolism from glucose to fatty acids and back. Baseline gene expression of the subcutaneous adipose tissue, along with a publicly available obesity data set, are visualised on the cellular network of metabolic flexibility to highlight the genes that are expressed and which are differentially affected in obesity.ConclusionWe have constructed an abstracted network covering glucose and fatty acid oxidation, as well as the PDC-PDK regulatory switch. In addition, we have shown how the network can be used for data visualisation and as a resource for follow-up studies.Electronic supplementary materialThe online version of this article (10.1186/s12263-018-0609-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.