Abstract-The strong impact of layout intricacies on analogcircuit performance poses great challenges to analog layout automation. Recently, template-based methods have been shown to be effective in reuse-centric layout automation for CMOS analog blocks such as operational amplifiers. The layout-retargeting method first creates a template by extracting a set of constraints from an existing layout representation. From this template, new layouts are then generated corresponding to new technology processes and new device specifications. For large analog layouts, however, this method results in an unmanageable template due to a tremendous increase in the number of constraints, especially those emerging from layout symmetries. In this paper, we present a new method of multilevel symmetry-constraint generation by utilizing the inherent circuit structure and hierarchy information from the extracted netlist. The method has been implemented in a layoutretargeting system called Intellectual Property Reuse-based Analog IC Layout (IPRAIL) and demonstrated 18 times reduction in the number of symmetry constraints required for retargeting an analog-to-digital converter layout. This enables our retargeting engine to successfully handle the complexities associated with large analog layouts. While manual relayout is known to take weeks, our layout-retargeting tool generates the target layout in hours and achieves comparable electrical performance.
Aggressive design cycles in the semiconductor industry demand a design-reuse principle for analog circuits. The strong impact of layout intricacies on analog circuit performance necessitates design reuse with special focus on layout aspects. This paper presents a computer-aided design tool and the methodology for a layoutcentric reuse of large analog intellectual-property blocks. From an existing layout representation, an analog circuit is retargeted to different processes and performances; the corresponding correct-byconstruction layouts are generated automatically and have performances comparable to manually crafted layouts. The tool and the methodology are validated on large analog intellectual-property blocks. While manual re-design and re-layout is known to take weeks to months, our reuse tool-suite achieves comparable performance in hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.