In this study, an in situ synthesis approach based on electrochemical reduction and ion exchange was employed to detect carbaryl species using a disposable, screen-printed carbon electrode fabricated with nanocomposite materials. Reduced graphene oxide (rGO) was used to create a larger electrode surface and more active sites. Gold nanoparticles (AuNPs,) were incorporated to accelerate electron transfer and enhance sensitivity. A cation exchange Nafion polymer was used to enable the adhesion of rGO and AuNPs to the electrode surface and speed up ion exchange. Cyclic voltammetry (CV), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), electrical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were performed to study the electrochemical and physical properties of the modified sensor. In the presence of differential pulse voltammetry (DPV), an rGO/AuNP/Nafion-modified electrode was effectively used to measure the carbaryl concentration in river and tap water samples. The developed sensor exhibited superior electrochemical performance in terms of reproducibility, stability, efficiency and selectivity for carbaryl detection with a detection limit of 0.2 µM and a concentration range between 0.5µM and 250 µM. The proposed approach was compared to capillary electrophoresis with ultraviolet detection (CE-UV).
A simple, rapid method using CE and microchip electrophoresis with C4D has been developed for the separation of four nonsteroidal anti‐inflammatory drugs (NSAIDs) in the environmental sample. The investigated compounds were ibuprofen (IB), ketoprofen (KET), acetylsalicylic acid (ASA), and diclofenac sodium (DIC). In the present study, we applied for the first time microchip electrophoresis with C4D detection to the separation and detection of ASA, IB, DIC, and KET in the wastewater matrix. Under optimum conditions, the four NSAIDs compounds could be well separated in less than 1 min in a BGE composed of 20 mM His/15 mM Tris, pH 8.6, 2 mM hydroxypropyl‐beta‐cyclodextrin, and 10% methanol (v/v) at a separation voltage of 1000–1200 V. The proposed method showed excellent repeatability, good sensitivity (LODs ranging between 0.156 and 0.6 mg/L), low cost, high sample throughputs, portable instrumentation for mobile deployment, and extremely lower reagent and sample consumption. The developed method was applied to the analysis of pharmaceuticals in wastewater samples with satisfactory recoveries ranging from 62.5% to 118%.
Polychlorinated biphenyls (PCBs) are a highly toxic family of synthetic chemical compounds. PCBs are widely spread in the environment and their toxicity can cause serious ailments to living organisms such as cancer; therefore, developing a device for the detection of PCBs in the environment is significant. In this paper, polyclonal primary anti-PCB antibodies were immobilized onto a gold screen-printed electrode with the purpose of creating an electrochemical immunosensor for the detection of Aroclor 1254. It was modified with 11-mercaptoundecanoic acid (11-MUA) and the activation of the carboxylic acid terminal was performed by cross-linking 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hyrodsuccinmide (NHS) on the electrode surface. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), linear sweep voltammetry, atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle measurement were employed to characterize SAM development on the gold electrode. Using a competitive assay, a 0.09 ng/mL−1 limit of detection and a linear range of 0.101–220 ng/mL−1 were determined. The self-assembled monolayers (SAM) were successful in encapsulating the PCBs on the immunosensor. The electrochemical detection showed better resolution when compared to traditional methods such as the ELISA optical technique. The novel electrochemical immunosensor approach that is discussed in this paper has the potential to offer rapid sample screening in a portable, disposable format and could contribute to the effective control and prevention of PCBs in the environment.
Recently, non-steroidal anti-inflammatory drugs (NSAIDs) have been increasingly used by humans and animals. Despite being effective against a wide variety of diseases, they pose a threat to aquatic environments. In...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.