A new aerobic Gram-positive bacterium designated TN58 producing antibacterial activities against Gram-positive and Gram-negative bacteria was isolated from Tunisian soil. The nucleotide sequence of the 16S rRNA gene (1516 bp) of the TN58 strain showed high similarity (96-98%) to the Streptomyces 16S rRNA genes, especially with that of Streptomyces lavendulae which produces the anti-tumor compound mitomycin C, and the cyclic peptide antibiotic, complestatin. Cultural characteristic studies, alignment data of the 16S rRNA gene, and analysis of the nucleotide sequence of a 2.2 kb genomic DNA fragment from TN58 strongly suggested that this strain could be an actinomycete and most probably belongs to the genus Streptomyces. Study of the influence of different nutritional compounds on antibiotic production showed that the highest antibacterial activities were obtained when glycerol at 1% (w/v) was used as sole carbon source in the presence of potassium. In analytical conditions, the application to supernatant culture of the TN58 strain of various extraction and purification steps led to the isolation of two pure active molecules having a retention time of 38.6 and 50.2 min, respectively. TN58 strain was untransformable with the Streptomyces cloning vector pIJ702 via classical polyethylene glycol (PEG) protoplast transformation and previously described Streptomyces electroporation procedures. Transformation was rendered possible by the electroporation technique only after utilization of a preculture medium without sucrose and a regeneration plate containing a low sucrose concentration.
Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002), as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA) from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.
We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro) diketopiperazine (DKP). To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp) was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS). The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro) biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.