We address the problem of recognizing emotion cause in conversations, define two novel sub-tasks of this problem, and provide a corresponding dialogue-level dataset, along with strong transformer-based baselines. The dataset is available at https:// github. com/ decla re-lab/ RECCON. Recognizing the cause behind emotions in text is a fundamental yet underexplored area of research in NLP. Advances in this area hold the potential to improve interpretability and performance in affect-based models. Identifying emotion causes at the utterance level in conversations is particularly challenging due to the intermingling dynamics among the interlocutors. We introduce the task of Recognizing Emotion Cause in CONversations with an accompanying dataset named RECCON, containing over 1,000 dialogues and 10,000 utterance cause/effect pairs. Furthermore, we define different cause types based on the source of the causes, and establish strong Transformer-based baselines to address two different sub-tasks on this dataset. Our transformer-based baselines, which leverage contextual pretrained embeddings, such as RoBERTa, outperform the state-of-the-art emotion cause extraction approaches on our dataset. We introduce a new task highly relevant for (explainable) emotion-aware artificial intelligence: recognizing emotion cause in conversations, provide a new highly challenging publicly available dialogue-level dataset for this task, and give strong baseline results on this dataset.
Recognizing the cause behind emotions in text is a fundamental yet under-explored area of research in NLP. Advances in this area hold the potential to improve interpretability and performance in affect-based models. Identifying emotion causes at the utterance level in conversations is particularly challenging due to the intermingling dynamic among the interlocutors. To this end, we introduce the task of recognizing emotion cause in conversations with an accompanying dataset named RECCON. Furthermore, we define different cause types based on the source of the causes and establish strong transformer-based baselines to address two different sub-tasks of RECCON: 1) Causal Span Extraction and 2) Causal Emotion Entailment. The dataset is available at https: //github.com/declare-lab/RECCON.
The problem of task planning for artificial agents remains largely unsolved. While there has been increasing interest in data-driven approaches for the study of task planning for artificial agents, a significant remaining bottleneck is the dearth of large-scale comprehensive task-based datasets. In this paper, we present ActioNet, an interactive end-to-end platform for data collection and augmentation of task-based dataset in 3D environment. Using ActioNet, we collected a large-scale comprehensive task-based dataset, comprising over 3000 hierarchical task structures and videos. Using the hierarchical task structures, the videos are further augmented across 50 different scenes to give over 150,000 video. To our knowledge, ActioNet is the first interactive end-to-end platform for such task-based dataset generation and the accompanying dataset is the largest task-based dataset of such comprehensive nature. The ActioNet platform and dataset will be made available to facilitate research in hierarchical task planning. The source code, platform, and dataset will be made available 1 .
There has been an emerging paradigm shift from the era of "internet AI" to "embodied AI", whereby AI algorithms and agents no longer simply learn from datasets of images, videos or text curated primarily from the internet. Instead, they learn through embodied physical interactions with their environments, whether real or simulated. Consequently, there has been substantial growth in the demand for embodied AI simulators to support a diversity of embodied AI research tasks. This growing interest in embodied AI is beneficial to the greater pursuit of artificial general intelligence, but there is no contemporary and comprehensive survey of this field. This paper comprehensively surveys state-of-the-art embodied AI simulators and research, mapping connections between these. By benchmarking nine state-of-the-art embodied AI simulators in terms of seven features, this paper aims to understand the simulators in their provision for use in embodied AI research. Finally, based upon the simulators and a pyramidal hierarchy of embodied AI research tasks, this paper surveys the main research tasks in embodied AIvisual exploration, visual navigation and embodied question answering (QA), covering the state-of-the-art approaches, evaluation and datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.