a análise e previsão de demanda é fundamental no planejamento estratégico da cadeia produtiva, sendo de significativa importância em diversos segmentos. O setor de transporte é um bom exemplo, dado a alta dinâmica no consumo de biocombustível, o que exige um acompanhamento mais intenso da produção, distribuição e consumo deste produto, a fim de prever falhas no suprimento das demandas populacionais. O cenário oportuniza a aplicação de técnicas preditivas da estatística e de aprendizado automático, sendo estas projeções, de grande valia para o entendimento do comportamento da demanda deste recurso a longo prazo. O presente trabalho expõe diferentes técnicas de aprendizado de máquina e estatística, com a finalidade de verificar o desempenho dessas técnicas na previsão de demanda por biocombustível. Com o auxílio da linguagem de programação python, os dados de venda dos biocombustíveis, etanol e biodiesel, foram utilizados para a modelagem por meio de três métodos: arima, long short-term memory - lstm e gradient boosting. Durante a análise de resíduos, observou-se que os modelos arima mostram maior qualidade nos ajustes. No entanto, a partir dos resultados obtidos e por meio da métrica de erro mape (mean absolute percentage error), tem-se que método lstm é o que detém melhor performance, com um erro mape de 11,1% para o biodiesel e 11,3% para o etanol.
Este artigo propõe uma metodologia híbrida para a previsão das séries temporais de deslocamentos relativos em um bloco da barragem da usina hidrelétrica de Itaipu, que integra os seguintes métodos numéricos: decomposição wavelet, support vector Machine e combinação linear de previsões. Todos os resultados estatísticos alcançados pela metodologia proposta foram mais acurados do que outras técnicas tradicionais (usadas aqui como benchmark), encorajando a sua adoção para tal finalidade. Deslocamentos relativos. Decomposição wavelet. Support vector regression. Combinação linear de previsões. This article proposes a hybrid methodology for forecasting relative displacements in a dam block at the Itaipu hydroelectric plant, which integrates the following numerical methods: wavelet decomposition, support vector machine and linear forecast combination. All the statistical results achieved by the proposed method are more accurate than other traditional techniques (used here as a benchmark), encouraging its adoption for this purpose. Relative displacements. Wavelet decomposition. Support vector regression. Forecasts.
O conhecimento de técnicas que permitam obter informações da tendência futura da produção é fundamental para o gestor rural. Diante disso, a finalidade desse trabalho foi realizar previsões. Para isso, foram utilizados modelos de séries temporais implementados no software livre R da produção brasileira de milho para as safras 2017/2018, 2018/2019 e 2019/2020. Foram aplicadas as metodologias ARIMA (Autoregressive Integrated Moving Average - Autorregressivo Integrado de Médias Móveis) e ETS (Error, Trend, Seasonal – Erro, Tendência, Sazonal). Ambos modelos provaram ser adequados. O modelo que apresentou os melhores resultados de previsão foi o ARIMA, cujo erro percentual médio absoluto das previsões foi menor que o apresentado no modelo ETS, quando comparado com os dados reservados para verificação da eficiência preditiva dos modelos ajustados. Os resultados demonstram a aplicabilidade dos modelos de previsão e ferramentas computacionais de fácil utilização. Tais técnicas visam contribuir no processo de tomada de decisão e planejamento por parte do gestor rural, que vê a cultura do milho, nos últimos anos, apresentar recordes de produção e ser um dos principais cultivares que contribui com a economia do Brasil.
A previsão de séries temporais é largamente utilizada nas diversas áreas do conhecimento humano, principalmente no planejamento e direcionamento estratégico das empresas. O sucesso desta tarefa depende das técnicas de previsões aplicadas. Neste artigo, é proposta uma metodologia híbrida para se projetar séries temporais. Para a validação da metodologia foi escolhida uma série de tempo já modelada por outros autores, possibilitando a comparação dos resultados. A metodologia proposta integra as seguintes técnicas: encolhimento wavelet, decomposição wavelet de nível r e redes neurais artificiais (RNAs). Primeiramente, uma série temporal a ser prevista é submetida ao método de filtragem wavelet proposto, o qual a decompõe em componentes de tendência e de resíduo linear. Em seguida, ambas são decompostas via decomposição de nível r, gerando, para cada uma, r+1 componentes wavelet (CWs); e, em seguida, cada CW é individualmente modelada por uma RNA. Finalmente, as previsões para todas as CWs são linearmente combinadas, produzindo as previsões para a série temporal supracitada. Para avaliá-lo, a série temporal de Canadian Lynx foi usada e todos os resultados alcançados pelo método proposto foram melhores do que outros existentes na literatura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.