H/ACA small nucleolar RNAs (snoRNAs) guide pseudouridylation as part of a small nucleolar ribonucleoprotein complex (snoRNP). Disruption of H/ACA snoRNA levels in stem cells impairs pluripotency, yet it remains unclear how H/ACA snoRNAs contribute to differentiation. To determine if H/ACA snoRNA levels are dynamic during differentiation, we comprehensively profiled H/ACA snoRNA abundance in multiple murine cell types and during differentiation in three cellular models, including mouse embryonic stem cells and mouse myoblasts. We determined that the profiles of H/ACA snoRNA abundance are cell-type specific, and we identified a subset of snoRNAs that are specifically regulated during differentiation. Additionally, we demonstrated that a decrease in Snora27 abundance upon differentiation corresponds to a decrease in pseudouridylation of its target site within the E-site transfer RNA (tRNA) binding region of the 28S ribosomal RNA (rRNA) in the large ribosomal subunit. Together, these data point toward a potential model in which H/ACA snoRNAs are specifically regulated during differentiation to alter pseudouridylation and fine tune ribosome function.
Congenital abnormalities of the urinary tract are some of the most common human developmental abnormalities. Several genetically engineered mouse models have been developed to mimic these abnormalities and aim to better understand the molecular mechanisms of disease. This atlas has been developed as an aid to pathologists and other biomedical scientists for identification of abnormalities in the developing murine urinary tract by cataloguing normal structures at each stage of development. Hematoxylin and eosin- and immunohistochemical-stained sections are provided, with a focus on E10.5-E18.5, as well as a brief discussion of postnatal events in urinary tract development. A section on abnormalities in the development of the urinary tract is also provided, and molecular mechanisms are presented as supplementary material. Additionally, overviews of the 2 key processes of kidney development, branching morphogenesis and nephrogenesis, are provided to aid in the understanding of the complex organogenesis of the kidney. One of the key findings of this atlas is the histological identification of the ureteric bud at E10.5, as previous literature has provided conflicting reports on the initial point of budding. Furthermore, attention is paid to points where murine development is significantly distinct from human development, namely, in the cessation of nephrogenesis.
Multiple stem cell types exhibit inherent tropism for cancer, and engineered stem cells have been used as therapeutic agents to specifically target cancer cells.Recently, stem cells have been engineered to target multiple surface receptors on tumor cells, as well as endothelial and immune cells in the tumor microenvironment.In this review, we discuss the rationales and strategies for developing multiple receptor-targeted stem cells, their mechanisms of action, and the promises and challenges they hold as cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.